cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065403 Primes of the form sigma(m^2) where m is a composite number ordered by values m.

Original entry on oeis.org

31, 127, 1093, 2801, 8191, 19531, 30941, 131071, 88741, 524287, 292561, 797161, 732541, 3500201, 5229043, 12207031, 25646167, 28792661, 39449441, 48037081, 305175781, 262209281, 917087137, 2147483647, 1394714501, 2666986681
Offset: 1

Views

Author

Labos Elemer, Nov 06 2001

Keywords

Comments

There are 46 cases below 10^12.
All Mersenne primes are here: sigma((2^((p-1)/2))^2) = sigma(2^(p-1)) = -1 + 2^p, for suitable p.
m is of the form p^(2*e) for some prime p and e > 1 as sigma is multiplicative and m is composite. Terms are sorted by values of m. The sequence isn't monotonic. - David A. Corneth, Jul 18 2020

Examples

			19531 is in the sequence as for the composite m = 125 we have sigma(m^2) = 19531. - _David A. Corneth_, Jul 18 2020
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n]; If[PrimeQ[s]&&!PrimeQ[Sqrt[n]], Print[{n, Sqrt[n], s}]], {n, 1, 20000000}]
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(m), next); x=sigma(m^2); if (isprime(x), write("b065403.txt", n++, " ", x); if (n==100, return)) ) } \\ Harry J. Smith, Oct 18 2009
    
  • PARI
    upto(n) = {res = List(); forstep(e = 4, logint(n, 2), 2, forprime(p = 2, sqrtnint(n, e), c = (p^(e + 1) - 1)/(p - 1); if(isprime(c), listput(res, [p^e, c]) ) ) ); listsort(res); vector(#res, i, res[i][2]) } \\ David A. Corneth, Jul 18 2020

Extensions

Name corrected by David A. Corneth, Jul 18 2020