cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065405 Composite numbers k such that the sum of the divisors of k^2 is a prime.

Original entry on oeis.org

4, 8, 27, 49, 64, 125, 169, 256, 289, 512, 529, 729, 841, 1849, 2197, 3125, 4913, 5329, 6241, 6889, 15625, 16129, 29791, 32768, 37249, 51529, 57121, 69169, 76729, 113569, 117649, 128881, 139129, 157609, 192721, 208849, 226981, 229441, 253009
Offset: 1

Views

Author

Labos Elemer, Nov 06 2001

Keywords

Comments

All these composite numbers k should be prime powers because if k=a*b with gcd(a,b)=1, then sigma(aabb) = sigma(aa)*sigma(bb) cannot be a prime; 46 of the 236 prime powers below 1000000 are here.

Crossrefs

Programs

  • Mathematica
    Select[ Range[3 10^5], ! PrimeQ[ # ] && PrimeQ[ DivisorSigma[1, #^2]] & ]
  • PARI
    isok(k) = { !isprime(k) && isprime(sigma(k^2)) } \\ Harry J. Smith, Oct 18 2009

Formula

sigma(a(n)^2) = sigma(A065404(n)) = A065403(n) is prime.