A065450 Make an infinite chessboard from the squares in the first quadrant; sequence gives number of squares a knight can reach in n moves starting at the origin.
1, 2, 10, 22, 37, 54, 76, 100, 129, 160, 196, 234, 277, 322, 372, 424, 481, 540, 604, 670, 741, 814, 892, 972, 1057, 1144, 1236, 1330, 1429, 1530, 1636, 1744, 1857, 1972, 2092, 2214, 2341, 2470, 2604, 2740, 2881, 3024, 3172, 3322, 3477, 3634, 3796, 3960
Offset: 0
Crossrefs
Cf. A098498.
Formula
Conjectures: G.f.: [1+6x^2+4x^3-4x^4-2x^5+2x^6]/[(1+x)*(1-x)^3]. For n>3, partial sums of A047356. - Ralf Stephan, Mar 06 2004
The second conjecture "For n>3, partial sums of A047356" is also true. From the last possible move, we can either move back to the second last possible move or to b(n)=A047883(n) new squares. So a(n) = a(n-2)+b(n). For n>6, b(n)=7(n-1)+4=A017029(n-1). But a number of the form 7n+4 is naturally the sum of two consecutive terms in A047356 (4=1+3,11=3+8,18=8+10, ...). The conjecture follows. - Vim Wenders, Apr 12 2008
Extensions
More terms from Don Reble, Nov 28 2001
Comments