cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A255212 Number A(n,k) of partitions of n^2 into at most k square parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 2, 1, 0, 1, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 3, 3, 3, 2, 1, 1, 0, 1, 1, 2, 3, 3, 4, 4, 2, 1, 1, 0, 1, 1, 2, 3, 4, 5, 5, 4, 1, 1, 1, 0, 1, 1, 2, 4, 5, 7, 9, 6, 2, 4, 2, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2015

Keywords

Examples

			Square array A(n,k) begins:
  1, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1, ...
  0, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1, ...
  0, 1, 1, 1, 2,  2,  2,  2,  2,  2,  2, ...
  0, 1, 1, 2, 2,  2,  3,  3,  3,  4,  4, ...
  0, 1, 1, 1, 2,  3,  3,  4,  5,  5,  6, ...
  0, 1, 2, 2, 3,  4,  5,  7,  8,  9, 11, ...
  0, 1, 1, 2, 4,  5,  9, 10, 11, 15, 17, ...
  0, 1, 1, 2, 4,  6,  9, 13, 18, 21, 27, ...
  0, 1, 1, 1, 2,  7,  9, 16, 25, 30, 41, ...
  0, 1, 1, 4, 6,  8, 18, 27, 36, 52, 68, ...
  0, 1, 2, 2, 7, 13, 23, 36, 51, 70, 94, ...
		

Crossrefs

Main diagonal gives A105152.
Cf. A302996.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0 or i=1 and n<=t, 1,
          (j-> `if`(t*jn, 0, b(n-j, i, t-1))))(i^2))
        end:
    A:= (n, k)-> b(n^2, n, k):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0 || i == 1 && n <= t, 1, Function[j, If[t*jn, 0, b[n-j, i, t-1]]]][i^2]]; A[n_, k_] := b[n^2, n, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A361695 Number of ways of writing n^2 as a sum of seven squares.

Original entry on oeis.org

1, 14, 574, 3542, 18494, 43414, 145222, 235998, 591934, 860846, 1779974, 2256422, 4678982, 5195750, 9675918, 10983742, 18942014, 19873966, 35294686, 34670454, 57349894, 59707494, 92513302, 90116222, 149759302, 135668414, 213025750, 209185718, 311753358, 287144326, 450333422
Offset: 0

Views

Author

Alois P. Heinz, Mar 22 2023

Keywords

Crossrefs

Column k=7 of A302996.

Programs

  • Maple
    a:= n-> coeff((sum(x^(j^2), j=-n..n))^7, x, n^2):
    seq(a(n), n=0..30);
    # second Maple program:
    b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0,
          b(n, t-1) +2*add(b(n-j^2, t-1), j=1..isqrt(n))))
        end:
    a:= n-> b(n^2, 7):
    seq(a(n), n=0..30);
  • Mathematica
    SquaresR[7, Range[0, 30]^2] (* Paolo Xausa, Aug 21 2025 *)

Formula

a(n) = [x^(n^2)] (Sum_{j=-n..n} x^(j^2))^7.
a(n) = A008451(n^2).
a(n) = A302996(n,7).
Showing 1-2 of 2 results.