cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A016727 Number of inequivalent solutions to x^2+y^2+z^2 = n^2.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 2, 3, 2, 3, 2, 5, 1, 4, 4, 4, 2, 7, 3, 4, 2, 5, 3, 9, 2, 5, 5, 5, 1, 11, 4, 7, 4, 6, 4, 10, 2, 7, 7, 7, 3, 13, 4, 7, 2, 9, 5, 14, 3, 8, 9, 10, 2, 16, 5, 9, 5, 9, 5, 21, 1, 11, 11, 10, 4, 17, 7, 10, 4, 11, 6, 18, 4, 16, 10, 11, 2, 23, 7, 12, 7, 14, 7, 20, 3
Offset: 0

Views

Author

csvcjld(AT)nomvst.lsumc.edu

Keywords

Crossrefs

Cf. A065458.
Column k=3 of A255212.

Programs

  • Mathematica
    Table[Length[PowersRepresentations[n^2, 3, 2]], {n, 0, 100}]

Formula

a(n) = A000164(n^2). - R. J. Mathar, Feb 12 2017

A063014 Number of solutions to n^2 = b^2 + c^2 (with c >= b >= 0).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 5, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2
Offset: 0

Views

Author

Henry Bottomley, Jul 26 2001

Keywords

Examples

			a(0)=1 since 0^2 = 0^2 + 0^2;
a(5)=2 since 5^2 = 0^2 + 5^2 = 3^2 + 4^2;
a(25)=3 since 25^2 = 0^2 + 25^2 = 7^2 + 24^2 = 15^2 + 20^2.
		

Crossrefs

Column k=2 of A255212.

Programs

  • Maple
    with(NumberTheory):
    A063014 := n -> nops(SumOfSquares(n^2));
    seq(A063014(n), n = 0 .. 100); # Felix Huber, Jun 01 2024

Formula

a(0) = 1; a(n) = A046080(n) + 1 for n > 0. [amended by Georg Fischer, Jan 25 2020]
a(n) = A000161(n^2). - Christian Krause, Dec 08 2022

A302996 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k, where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 4, 2, 0, 1, 8, 6, 4, 2, 0, 1, 10, 24, 30, 4, 2, 0, 1, 12, 90, 104, 6, 12, 2, 0, 1, 14, 252, 250, 24, 30, 4, 2, 0, 1, 16, 574, 876, 730, 248, 30, 4, 2, 0, 1, 18, 1136, 3542, 4092, 1210, 312, 54, 4, 2, 0, 1, 20, 2034, 12112, 18494, 7812, 2250, 456, 6, 4, 2, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

A(n,k) is the number of ordered ways of writing n^2 as a sum of k squares.

Examples

			Square array begins:
  1,  1,   1,   1,    1,     1,  ...
  0,  2,   4,   6,    8,    10,  ...
  0,  2,   4,   6,   24,    90,  ...
  0,  2,   4,  30,  104,   250,  ...
  0,  2,   4,   6,   24,   730,  ...
  0,  2,  12,  30,  248,  1210,  ...
		

Crossrefs

Columns k=0..4,7 give A000007, A040000, A046109, A016725, A267326, A361695.
Main diagonal gives A232173.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0,
          b(n, t-1)+2*add(b(n-j^2, t-1), j=1..isqrt(n))))
        end:
    A:= (n, k)-> b(n^2, k):
    seq(seq(A(n,d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 10 2023
  • Mathematica
    Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

A(n,k) = [x^(n^2)] (Sum_{j=-infinity..infinity} x^(j^2))^k.

A105152 Number of sum of squares representations of n^2 in n dimensions disregarding order and sign.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 9, 13, 25, 52, 94, 195, 354, 691, 1341, 2514, 4746, 8984, 16639, 31031, 57421, 105091, 192266, 349765, 632223, 1138114, 2043082, 3642712, 6474196, 11462149, 20189285, 35427948, 61987644, 107928280, 187336851, 324080969, 558451251, 959214488
Offset: 0

Views

Author

Wouter Meeussen, Apr 10 2005

Keywords

Examples

			a(5)=4 since we can write 5^2 as 0^2+0^2+0^2+0^2+5^2, 0^2+0^2+0^2+3^2+4^2, 0^2+1^2+2^2+2^2+4^2, 2^2+2^2+2^2+2^2+3^2.
		

Crossrefs

Main diagonal of A255212.

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions`; Table[Length@SumOfSquaresRepresentations[k, k^2], {k, 16}]

Extensions

a(18)-a(20) from Robert G. Wilson v, Apr 12 2005
a(0), a(21)-a(37) from Alois P. Heinz, Feb 16 2015

A065458 Number of inequivalent (ordered) solutions to a^2 + b^2 + c^2 + d^2 = n^2.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 4, 2, 6, 7, 6, 4, 8, 10, 14, 2, 11, 14, 13, 7, 23, 15, 17, 4, 24, 21, 31, 10, 25, 37, 28, 2, 46, 29, 49, 14, 38, 35, 61, 7, 45, 62, 49, 15, 93, 47, 57, 4, 72, 67, 97, 21, 71, 84, 101, 10, 119, 70, 86, 37, 92, 79, 165, 2, 138, 127, 109, 29, 168, 140, 121, 14
Offset: 0

Views

Author

Wouter Meeussen, Nov 18 2001

Keywords

Examples

			a(5)=3 because 25 produces {0,0,0,5}, {0,0,3,4}, {1,2,2,4}.
		

Crossrefs

Column k=4 of A255212.

Programs

  • Maple
    N:= 100:
    R:= Vector(N,1):
    for a from 0 to N do
      for b from a to floor(sqrt(N^2-a^2)) do
         for c from b to floor(sqrt(N^2-a^2-b^2)) do
           q:= a^2 + b^2 + c^2;
           for f in numtheory:-divisors(q) do
              if f^2 + 2*f*c <= q and (f + q/f)::even then
                 r:= (f + q/f)/2;
                 if r <= N then R[r]:= R[r]+1 fi;
              fi
    od od od od:
    convert(R,list); # Robert Israel, Feb 16 2015
  • Mathematica
    Length/@Table[SumOfSquaresRepresentations[4, (k)^2], {k, 72}]

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 17 2015

A065459 Number of inequivalent (ordered) solutions to n^2 = sum of 5 squares of integers >= 0.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 13, 12, 13, 17, 25, 22, 27, 31, 35, 38, 46, 49, 61, 61, 61, 73, 92, 83, 112, 106, 118, 127, 147, 138, 185, 175, 178, 198, 239, 212, 254, 262, 298, 294, 341, 304, 404, 376, 385, 432, 483, 441, 539, 517, 560, 551, 680, 587, 745, 693, 698
Offset: 0

Views

Author

Wouter Meeussen, Nov 18 2001

Keywords

Examples

			a(5)=4 because 25 produces {0,0,0,0,5}, {0,0,0,3,4}, {0,1,2,2,4}, {2,2,2,2,3}.
		

Crossrefs

Column k=5 of A255212.

Programs

  • Mathematica
    Length/@Table[SumOfSquaresRepresentations[5, (k)^2], {k, 72}]

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 17 2015

A065461 Number of inequivalent (ordered) solutions to n^2 = sum of 7 squares of integers >= 0.

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 10, 13, 16, 27, 36, 43, 58, 72, 99, 130, 146, 178, 254, 265, 342, 417, 507, 540, 726, 745, 975, 1092, 1289, 1338, 1845, 1751, 2246, 2447, 2948, 2852, 3932, 3638, 4728, 4868, 5778, 5618, 7659, 6887, 8891, 8887, 10825, 10109, 13712
Offset: 0

Views

Author

Wouter Meeussen, Nov 18 2001

Keywords

Examples

			a(4)=4 because 16 produces {0,0,0,0,0,0,4}, {0,0,0,2,2,2,2}, {0,0,1,1,1,2,3}, {1,1,1,1,2,2,2}.
		

Crossrefs

Column k=7 of A255212.

Programs

  • Mathematica
    Table[Length[PowersRepresentations[n^2,7,2]],{n,0,50}] (* Harvey P. Dale, Sep 08 2020 *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 17 2015
Previous Mathematica program replaced by Harvey P. Dale, Sep 08 2020

A065460 Number of inequivalent (ordered) solutions to n^2 = sum of 6 squares of integers >= 0.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 9, 9, 9, 18, 23, 24, 29, 37, 53, 62, 59, 77, 116, 106, 130, 156, 199, 192, 221, 257, 342, 336, 384, 402, 577, 501, 599, 639, 835, 774, 910, 912, 1220, 1113, 1378, 1298, 1703, 1530, 1907, 1862, 2398, 2094, 2471, 2393, 3356, 2765, 3543
Offset: 0

Views

Author

Wouter Meeussen, Nov 18 2001

Keywords

Examples

			a(5)=5 because 25 produces {0,0,0,0,0,5}, {0,0,0,0,3,4}, {0,0,1,2,2,4}, {0,2,2,2,2,3}, {1,1,1,2,3,3}.
		

Crossrefs

Column k=6 of A255212.

Programs

  • Mathematica
    Length/@Table[SumOfSquaresRepresentations[6, (k)^2], {k, 72}]

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 17 2015

A065462 Number of inequivalent (ordered) solutions to n^2 = sum of 8 squares of integers >= 0.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 11, 18, 25, 36, 51, 73, 90, 133, 169, 223, 295, 380, 452, 603, 763, 903, 1115, 1385, 1668, 2025, 2398, 2811, 3535, 4011, 4683, 5503, 6724, 7316, 8684, 9946, 11844, 12994, 15091, 16712, 20493, 21663, 24975, 27536, 33079, 34654, 39957, 43315
Offset: 0

Views

Author

Wouter Meeussen, Nov 18 2001

Keywords

Examples

			a(4)=5 because 16 produces {0,0,0,0,0,0,0,4}, {0,0,0,0,2,2,2,2}, {0,0,0,1,1,1,2,3}, {0,1,1,1,1,2,2,2}, {1,1,1,1,1,1,1,3}.
		

Crossrefs

Column k=8 of A255212.

Programs

  • Mathematica
    Length/@Table[SumOfSquaresRepresentations[8, (k)^2], {k, 36}]

Extensions

a(0), a(37)-a(47) from Alois P. Heinz, Feb 16 2015

A255213 Number of partitions of n^2 into at most 9 square parts.

Original entry on oeis.org

1, 1, 2, 4, 5, 9, 15, 21, 30, 52, 70, 100, 142, 196, 264, 378, 477, 640, 841, 1082, 1389, 1783, 2203, 2786, 3460, 4290, 5209, 6410, 7810, 9397, 11190, 13501, 16122, 18936, 22374, 26491, 30871, 36211, 41932, 48389, 56703, 65192, 73967, 85947, 98687, 110647
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2015

Keywords

Crossrefs

Column k=9 of A255212.
Showing 1-10 of 11 results. Next