A065567 T(n,m) is the sum over all m-subsets of {1,...,n} of the gcd of the subset.
1, 3, 1, 6, 3, 1, 10, 7, 4, 1, 15, 11, 10, 5, 1, 21, 20, 21, 15, 6, 1, 28, 26, 36, 35, 21, 7, 1, 36, 38, 60, 71, 56, 28, 8, 1, 45, 50, 90, 127, 126, 84, 36, 9, 1, 55, 67, 132, 215, 253, 210, 120, 45, 10, 1, 66, 77, 177, 335, 463, 462, 330, 165, 55, 11, 1, 78, 105, 250, 512, 798, 925, 792, 495, 220, 66, 12, 1
Offset: 1
Examples
Triangle begins: 1; 3, 1; 6, 3, 1; 10, 7, 4, 1; 15, 11, 10, 5, 1; ... T(4,2) = 7 = gcd(1,2) + gcd(1,3) + gcd(1,4) + gcd(2,3) + gcd(2,4) + gcd(3,4).
Links
- Alois P. Heinz, Rows n = 1..200 (first 31 rows from Sean A. Irvine)
Crossrefs
Programs
-
Maple
with(combstruct): a065567_row := proc(n) local k,L,l,R,comb; R := NULL; for k from 1 to n do L := 0; comb := iterstructs(Combination(n),size=k): while not finished(comb) do l := nextstruct(comb); L := L + igcd(op(l)); od; R := R,L; od; R end: # Peter Luschny, Dec 07 2010 # second Maple program: b:= proc(n, g, t) option remember; `if`(n=0, g*x^t, b(n-1, igcd(g, n), t+1)+b(n-1, g, t)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0$2)): seq(T(n), n=1..12); # Alois P. Heinz, Sep 05 2023
-
Mathematica
Table[Plus@@(GCD@@@KSubsets[Range[n], m]), {n, 16}, {m, n}]
Formula
Sum_{k=1..n} (-1)^(k+1) * T(n,k) = A002088(n). - Alois P. Heinz, Sep 05 2023
Comments