cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065601 Number of Dyck paths of length 2n with exactly 1 hill.

Original entry on oeis.org

0, 1, 0, 2, 4, 13, 40, 130, 432, 1466, 5056, 17672, 62460, 222853, 801592, 2903626, 10582816, 38781310, 142805056, 528134764, 1960825672, 7305767602, 27307800400, 102371942932, 384806950624, 1450038737668, 5476570993440, 20727983587220, 78606637060012
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2001

Keywords

Comments

Convolution of A000957(n) with itself gives a(n-1).

Crossrefs

2nd column of A065600. Cf. A000957.

Programs

  • Maple
    b:= proc(x, y, h, z) option remember;
         `if`(x<0 or y b(n$2, true$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2012
    # second Maple program:
    series(((1-sqrt(1-4*x))/(3-sqrt(1-4*x)))^2/x, x=0, 30);  # Mark van Hoeij, Apr 18 2013
  • Mathematica
    CoefficientList[Series[((1-Sqrt[1-4*x])/(3-Sqrt[1-4*x]))^2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
    Table[Sum[(-1)^j*(j+1)*(j+2)*Binomial[2*n-1-j,n],{j,0,n-1}]/(n+1),{n,0,30}] (* Vaclav Kotesovec, May 18 2015 *)

Formula

Reference gives g.f.'s.
Conjecture: 2*(n+1)*a(n) +(-3*n+2)*a(n-1) +2*(-9*n+19)*a(n-2) +4*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Dec 10 2013
a(n) ~ 2^(2*n+3) / (27 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014

Extensions

More terms from Emeric Deutsch, Dec 03 2001