cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A126093 Inverse binomial matrix applied to A110877.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 6, 4, 1, 6, 18, 15, 6, 1, 18, 57, 54, 28, 8, 1, 57, 186, 193, 118, 45, 10, 1, 186, 622, 690, 474, 218, 66, 12, 1, 622, 2120, 2476, 1856, 976, 362, 91, 14, 1, 2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2007

Keywords

Comments

Diagonal sums are A065601. - Philippe Deléham, Mar 05 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
     1;
     0,    1;
     1,    2,    1;
     2,    6,    4,    1;
     6,   18,   15,    6,    1;
    18,   57,   54,   28,    8,    1;
    57,  186,  193,  118,   45,   10,   1;
   186,  622,  690,  474,  218,   66,  12,   1;
   622, 2120, 2476, 1856,  976,  362,  91,  14,  1;
  2120, 7338, 8928, 7164, 4170, 1791, 558, 120, 16, 1;
Production matrix begins
  0, 1;
  1, 2, 1;
  0, 1, 2, 1;
  0, 0, 1, 2, 1;
  0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 0, 1, 2, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 2, 1;
- _Philippe Deléham_, Nov 07 2011
		

Programs

  • Mathematica
    T[0, 0, x_, y_]:= 1; T[n_, 0, x_, y_]:= x*T[n-1,0,x,y] + T[n-1,1,x,y]; T[n_, k_, x_, y_]:= T[n, k, x, y]= If[k<0 || k>n, 0, T[n-1,k-1,x,y] + y*T[n-1,k,x,y] + T[n-1,k+1,x,y]]; Table[T[n,k,0,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 21 2017 *)
  • Sage
    @CachedFunction
    def T(n, k, x, y):
        if (k<0 or k>n): return 0
        elif (n==0 and k==0): return 1
        elif (k==0): return x*T(n-1,0,x,y) + T(n-1,1,x,y)
        else: return T(n-1,k-1,x,y) + y*T(n-1,k,x,y) + T(n-1,k+1,x,y)
    [[T(n,k,0,2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020

Formula

Triangle T(n,k), 0<=k<=n, read by rows defined by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1.
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A000957(m+n+1).
Sum_{k=0..n-1} T(n,k) = A026641(n), for n>=1. - Philippe Deléham, Mar 05 2007
Sum_{k=0..n} T(n,k)*(3k+1) = 4^n. - Philippe Deléham, Mar 22 2007

A065600 Triangle T(n,k) giving number of Dyck paths of length 2n with exactly k hills (0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 6, 4, 3, 0, 1, 18, 13, 6, 4, 0, 1, 57, 40, 21, 8, 5, 0, 1, 186, 130, 66, 30, 10, 6, 0, 1, 622, 432, 220, 96, 40, 12, 7, 0, 1, 2120, 1466, 744, 328, 130, 51, 14, 8, 0, 1, 7338, 5056, 2562, 1128, 455, 168, 63, 16, 9, 0, 1, 25724, 17672, 8942, 3941, 1590, 602, 210, 76, 18, 10, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2001

Keywords

Comments

T(n,k) is the number of Łukasiewicz paths of length n having k level steps (i.e., (1,0)) on the x-axis. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1) (see R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps). Example: T(3,1)=2 because we have HUD and UDH, where H=(1,0), U(1,1) and D=(1,-1). - Emeric Deutsch, Jan 06 2005
The summand i*binomial(k+i,i)*binomial(2*n-2*k-2*i,n-k)/(n-k-i) in the Maple formula below counts Dyck n-paths containing k low peaks and k+i returns altogether. For example, with n=3, k=1, i=1, it counts the 2 paths UDUUDD, UUDDUD: each has k=1 low peaks and k+i=2 returns to ground level. - David Callan, Nov 02 2005
Renewal array for the Fine numbers: Riordan array (f(x)/x,f(x)) where f(x) is the g.f. for A000957. Row sums are the Catalan numbers A000108. - Paul Barry, Oct 30 2006, Jan 27 2009
T(n,k) is the number of 321-avoiding permutations of [n] having k fixed points. Example: T(4,2)=3 because we have 1243, 1324 and 2134. T(n,k) is the number of Dyck paths of semilength n having k centered tunnels. Example: T(4,2)=3 because we have UD(U)(U)(D)(D)UD, (U)UD(U)(D)UD(D) and (U)(U)UDUD(D)(D) (the extremities of the centered tunnels are shown between parentheses). - Emeric Deutsch, Sep 06 2007
Inverse of Riordan array ((1-2x)/(1-x)^2,x(1-2x)/(1-x)^2); see A124394. - Paul Barry, Jan 27 2009
Triangle read by rows, product of A033184 and A130595 considered as infinite lower triangular arrays; A065600 = A033184*A130595. - Philippe Deléham, Dec 07 2009
T(n,k) is the number of ordered, unlabeled, rooted trees with n+1 nodes that have exactly k subtrees of size 1. A subtree of size 1 is a subtree attached to the root that consists of only a single node. Cf. A000957 (column 1). - Geoffrey Critzer, Sep 16 2013
Also the convolution triangle of the Fine numbers A000957. - Peter Luschny, Oct 08 2022

Examples

			From _Philippe Deléham_, Feb 23 2012: (Start)
Triangle begins:
   1;
   0,  1;
   1,  0,  1;
   2,  2,  0,  1;
   6,  4,  3,  0,  1;
  18, 13,  6,  4,  0,  1;
  57, 40, 21,  8,  5,  0,  1; (End)
T(4,2)=3 because we have (UD)(UD)UUDD, (UD)UUDD(UD) and UUDD(UD)(UD), where U=(1,1), D=(1,-1) (the hills, i.e., peaks at level 1, are shown between parentheses).
		

Crossrefs

First columns are A000957, A065601, A294527.

Programs

  • Maple
    T := proc(n,k) if k0, b(x-1, y-1, 0)*`if`(t*y=1, z, 1), 0)+
          `if`(y (p-> seq(coeff(p, z, i), i=0..n))(b(n+n, 0$2)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Nov 02 2017
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, A000957); # Peter Luschny, Oct 08 2022
  • Mathematica
    t[n_, k_] := If[ kJean-François Alcover, Dec 14 2011, after Maple *)
    nn=10;g=(1-(1-4x)^(1/2))/2;CoefficientList[Series[x/(1-(g-x+y x)),{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 16 2013 *)
    T[ n_, k_] := If[ k < 0 || k > n, 0, Coefficient[ SeriesCoefficient[ Series[ 2 / (1 + 2*x + Sqrt[1 - 4*x] - 2*x*y), {x, 0, n}], {x, 0, n}], y, k]]; (* Michael Somos, Jun 01 2016 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, polcoeff( polcoeff( 2 / (1 + 2*x + (1 - 4*x)^(1/2) - 2*x*y) + x * O(x^n), n), k))}; /* Michael Somos, Jun 01 2016 */

Formula

See Maple line.
G.f.: (1 - (1 - 4*x)^(1/2))/(x*(3 - y + (1 - 4*x)^(1/2)*(y-1))) = Sum_{n>=0, k>=0} T(n, k)x^n*y^k. - David Callan, Aug 17 2004
G.f.: 1/(1-xy-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-.... (continued fraction). - Paul Barry, Jan 27 2009
G.f.: ((1-sqrt(1-4*x))/(3-sqrt(1-4*x)))^k = Sum_{n>=k} T(n+1,k+1)*x^n, where T(n,k) = (Sum_{i=0..n-k} (-1)^i*(k+i+1)*binomial(k+i,i)*binomial(2*n-k-i,n))/(n+1). - Vladimir Kruchinin, Dec 20 2011
T(n,k) = T(n-1,k-1) + Sum_{i>=0} T(n-1,k+1+i)*2^i. - Philippe Deléham, Feb 23 2012
G.f.: 2 / (1 + 2*x + (1 - 4*x)^(1/2) - 2*x*y). - Michael Somos, Jun 01 2016

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

A294527 Number of Dyck paths of length 2n with exactly 2 hills.

Original entry on oeis.org

0, 0, 1, 0, 3, 6, 21, 66, 220, 744, 2562, 8942, 31569, 112530, 404445, 1464042, 5332872, 19532688, 71893470, 265778040, 986416614, 3674092044, 13729259586, 51455182260, 193369903608, 728504292576, 2750904025276, 10409856537786, 39470613237645, 149935171349546
Offset: 0

Views

Author

Eric M. Schmidt, Nov 01 2017

Keywords

Crossrefs

Column k=2 of A065600. Cf. A000957, A065601.

Programs

  • Mathematica
    a[n_] := Which[n>2, Sum[(i Binomial[i+2, i] Binomial[2n-2i-4, n-2])/(n-i-2), {i, 0, (n-2)/2}], n == 2, 1, True, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 27 2018 *)

Formula

Conjecture: 2*(3*n-5) *(n-2) *(3*n+11) *(n+1) *a(n) -(3*n+11) *(n-3) *(21*n^2-35*n+10) *a(n-1) -2*(3*n+11) *(n-1) *(2*n-1) *(3*n-2) *a(n-2)= 0. - R. J. Mathar, Jun 24 2018

A374835 Number of ternary paths of length 3*n having exactly 1 hill.

Original entry on oeis.org

0, 1, 0, 4, 14, 72, 370, 1995, 11064, 62774, 362614, 2125479, 12610410, 75584363, 457000668, 2783991972, 17071362986, 105287143740, 652687596388, 4064618917998, 25416557913498, 159523021737403, 1004594882114020, 6345859437931884, 40198433775513524
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2024

Keywords

Crossrefs

Column k=1 of A101371.

Programs

  • PARI
    a(n) = sum(k=0, n-1, (-1)^k*(k+1)*(k+2)/(2*n-k)*binomial(3*n-2-2*k, n-1-k));

Formula

a(n) = Sum_{k=0..n-1} (-1)^k * (k+1)*(k+2)/(2*n-k) * binomial(3*n-2-2*k,n-1-k).
G.f.: x * (g/(1 + x*g))^2, where g = 1 + x*g^3.
Showing 1-4 of 4 results.