cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A033184 Catalan triangle A009766 transposed.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 9, 4, 1, 42, 42, 28, 14, 5, 1, 132, 132, 90, 48, 20, 6, 1, 429, 429, 297, 165, 75, 27, 7, 1, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 1

Views

Author

Keywords

Comments

Triangle read by rows: T(n,k) = number of Dyck n-paths (A000108) containing k returns to ground level. E.g., the paths UDUUDD, UUDDUD each have 2 returns; so T(3,2)=2. Row sums over even-indexed columns are the Fine numbers A000957. - David Callan, Jul 25 2005
Triangular array of numbers a(n,k) = number of linear forests of k planted planar trees and n non-root nodes.
Catalan convolution triangle; with offset [0,0]: a(n,m)=(m+1)*binomial(2*n-m,n-m)/(n+1), n >= m >= 0, else 0. G.f. for column m: c(x)*(x*c(x))^m with c(x) g.f. for A000108 (Catalan). - Wolfdieter Lang, Sep 12 2001
a(n+1,m+1), n >= m >= 0, a(n,m) := 0, nA030528(n,m)*(-1)^(n-m).
a(n,k)=number of Dyck paths of semilength n and having k returns to the axis. Also number of Dyck paths of semilength n and having first peak at height k. Also number of ordered trees with n edges and root degree k. Also number of ordered trees with n edges and having the leftmost leaf at level k. Also number of parallelogram polyominoes of semiperimeter n+1 and having k cells in the leftmost column. - Emeric Deutsch, Mar 01 2004
Triangle T(n,k) with 1<=k<=n given by [0, 1, 1, 1, 1, 1, 1, 1, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] = 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 5, 5, 3, 1; 0, 14, 14, 9, 4, 1; ... where DELTA is the operator defined in A084938; essentially the same triangle as A059365. - Philippe Deléham, Jun 14 2004
Number of Dyck paths of semilength and having k-1 peaks at height 2. - Emeric Deutsch, Aug 31 2004
Riordan array (c(x),x*c(x)), c(x) the g.f. of A000108. Inverse of Riordan array (1-x,x*(1-x)). - Paul Barry, Jun 22 2005
Subtriangle of triangle A106566. - Philippe Deléham, Jan 07 2007
T(n, k) is also the number of order-preserving and order-decreasing full transformations (of an n-chain) with exactly k fixed points. - Abdullahi Umar, Oct 02 2008
Triangle read by rows, product of A065600 and A007318 considered as infinite lower triangular arrays; A033184 = A065600*A007318. - Philippe Deléham, Dec 07 2009
The formula stating "Column k is the k-fold convolution of column 1" is equivalent to repeatedly applying M to [1,0,0,0,...], where M is an upper triangular matrix of all 1's with an additional single subdiagonal of 1's. - Gary W. Adamson, Jun 06 2011
4^(n-1) = (n-th row terms) dot (first n terms in A001792), where A001792 = binomial transform of the natural numbers: (1, 3, 8, 20, 48, 112, ...). Example: 4^4 = 256 = (14, 14, 9, 4, 1) dot (1, 3, 8, 20, 48) = (42 + 42 + 28 + 14 + 5 + 1) = 256. - Gary W. Adamson, Jun 17 2011
The e.g.f. for the n-th subdiagonal of the triangle has the form exp(x)*P(n,x), where P(n,x) is the e.g.f. for row n of triangle A039599. For example, the third row of A039599 is [5, 9, 5, 1] and so the third subdiagonal sequence of this triangle [5, 14, 28, 48, 75, ...] has the e.g.f. exp(x)*(5 + 9*x + 5*x^2/2! + x^3/3!). - Peter Bala, Oct 15 2019
Antidiagonals of convolution matrix of Table 1.3, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019
Also the convolution triangle of A120588(n) = A000108(n-1) for n > 0. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
  ---+-----------------------------------
  n\k|   1    2    3    4    5    6    7
  ---+-----------------------------------
   1 |   1
   2 |   1    1
   3 |   2    2    1
   4 |   5    5    3    1
   5 |  14   14    9    4    1
   6 |  42   42   28   14    5    1
   7 | 132  132   90   48   20    6    1
From _Peter Bala_, Feb 17 2025: (Start)
The array factorizes as an infinite product (read from right to left) of triangular arrays:
  / 1               \        / 1              \ / 1              \ / 1             \
  | 1    1           |       | 0   1          | | 0  1           | | 1  1          |
  | 2    2   1       | = ... | 0   0   1      | | 0  1   1       | | 1  1  1       |
  | 5    5   3   1   |       | 0   0   1  1   | | 0  1   1  1    | | 1  1  1  1    |
  |14   14   9   4  1|       | 0   0   1  1  1| | 0  1   1  1  1 | | 1  1  1  1  1 |
  |...               |       |...             | |...             | |...            |
See Bala, Example 2.1. (End)
		

Crossrefs

Rows of Catalan triangle A009766 read backwards.
a(n, 1) = A000108(n-1). Row sums = A000108(n) (Catalan).
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Cf. A116364 (row squared sums), A120588.

Programs

  • Haskell
    a033184 n k = a033184_tabl !! (n-1) !! (k-1)
    a033184_row n = a033184_tabl !! (n-1)
    a033184_tabl = map reverse a009766_tabl
    -- Reinhard Zumkeller, Feb 19 2014
    
  • Magma
    /* As triangle: */ [[Binomial(2*n-k,n)*k/(2*n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 12 2015
  • Maple
    a := proc(n,k) if k<=n then k*binomial(2*n-k,n)/(2*n-k) else 0 fi end: seq(seq(a(n,k),k=1..n),n=1..10);
    # Uses function PMatrix from A357368. Adds row and column for n, k = 0.
    PMatrix(10, n -> binomial(2*(n-1), n-1) / n); # Peter Luschny, Oct 07 2022
  • Mathematica
    nn = 10; c = (1 - (1 - 4 x)^(1/2))/(2 x); f[list_] := Select[list, # > 0 &]; Map[f, Drop[CoefficientList[Series[y x c/(1 - y x c), {x, 0, nn}], {x, y}],1]] //Flatten (* Geoffrey Critzer, Jan 31 2012 *)
    Flatten[Reverse /@ NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *)
    T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = T[n-1, k-1]+T[n, k+1]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    T(n,k)=binomial(2*(n-k)+k,n-k)*(k+1)/(n+1) \\ Paul D. Hanna, Aug 11 2008
    
  • Sage
    # The simplest way to construct the triangle.
    def A033184_triangle(n) :
        T = [0 for i in (0..n)]
        for k in (1..n) :
            T[k] = 1
            for i in range(k-1,0,-1) :
                T[i] = T[i-1] + T[i+1]
            print([T[i] for i in (1..k)])
    A033184_triangle(10) # Peter Luschny, Jan 27 2012
    

Formula

Column k is the k-fold convolution of column 1. The triangle is also defined recursively by (i) entries outside triangle are 0, (ii) top left entry is 1, (iii) every other entry is sum of its east and northwest neighbor. - David Callan, Jul 25 2005
G.f.: t*x*c/(1-t*x*c), where c=(1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Mar 01 2004
T(n+1,k+1) = C(2*n-k, n-k)*(k+1)/(n+1). - Paul D. Hanna, Aug 11 2008
T((m+1)*n+r-1,m*n+r-1)*r/(m*n+r) = Sum_{k=1..n} (k/n)*T((m+1)*n-k-1,m*n-1)*T(r+k,r), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n-1,m-1) = (m/n)*Sum_{k=1..n-m+1} (k*A000108(k-1)*T(n-k-1,m-2)), n >= m > 1. - Vladimir Kruchinin, Mar 17 2011
T(n,k) = C(2*n-k-1,n-k) - C(2*n-k-1,n-k-1). - Dennis P. Walsh, Mar 19 2012
T(n,k) = C(2*n-k,n)*k/(2*n-k). - Dennis P. Walsh, Mar 19 2012
T(n,k) = T(n,k-1) - T(n-1,k-2). - Dennis P. Walsh, Mar 19 2012
G.f.: 2*x*y / (1 + sqrt(1 - 4*x) - 2*x*y) = Sum_{n >= k > 0} T(n, k) * x^n * y^k. - Michael Somos, Jun 06 2016

A000957 Fine's sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n nodes having root of even degree.

Original entry on oeis.org

0, 1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252, 30711521221376
Offset: 0

Views

Author

Keywords

Comments

Row-sum of signed Catalan triangle A009766. - Wouter Meeussen
There are two schools of thought about the best indexing for these numbers. Deutsch and Shapiro have a(4) = 6 whereas here a(5) = 6. The formulas given here use both labelings.
From D. G. Rogers, Oct 18 2005: (Start)
I notice that you have some other zero-one evaluations of binary bracketings (such as A055395). But if you have an operation # with 0#0 = 1#0 = 1, 0#1 = 1#1 = 0, and look at the number of bracketings of a string of n 0's that come out 0, you get another instance of the Fine numbers.
For Z = 1 + x(ZW + WW) = 1 + x CW and W = x(ZZ + ZW) = xZC. Hence Z = 1 + xxCCZ, the functional equational for the g.f. of the Fine numbers. Indeed, C = Z + W = Z + xCZ.
In terms of rooted planar trees with root of even degree, this says that of all rooted planar trees, some have root of even degree (Z) and some have root of odd degree (xCZ). (End)
Hankel transform of a(n+1) = [1,0,1,2,6,18,57,186,...] is A000012 = [1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
Starting with offset 3 = iterates of M * [1,0,0,0,...] where M = a tridiagonal matrix with [0,2,2,2,...] as the main diagonal and [1,1,1,...] as the super and subdiagonals. - Gary W. Adamson, Jan 09 2009
Starting with 1 and convolved with A068875 = the Catalan numbers with offset 1. - Gary W. Adamson, May 01 2009
For a relation to non-crossing partitions of the root system A_n, see A100754. - Tom Copeland, Oct 19 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x) = [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)] = (x-2x^2)/(1-x)^2, and Fin(Cinv(x)) = P(x).
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)] = (x-x^2) / (1 + x - x^2).
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
a(n+1) is the number of Dyck paths of semilength n avoiding UD at Level 0. For n = 3 the a(4) = 2 such Dyck paths are UUUDDD and UUDUDD. - Ran Pan, Sep 23 2015
For n >= 3, a(n) is the number of permutations pi of [n-2] such that s(pi) avoids the patterns 132, 231, and 312, where s is West's stack-sorting map. - Colin Defant, Sep 16 2018
Named after the American scientist Terrence Leon Fine (1939-2021). - Amiram Eldar, Jun 08 2021

Examples

			G.f. = x + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 57*x^7 + 186*x^8 + 622*x^9 + 2120*x^10 + ...
		

References

  • Emeric Deutsch and Louis W. Shapiro, Seventeen Catalan identities, Bull. Instit. Combin. Applic., Vol. 31 (2001), pp. 31-38.
  • Ki Hang Kim, Douglas G. Rogers and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013). - N. J. A. Sloane, Jun 05 2012
  • Louis W. Shapiro and Carol J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A065600.
Sequence with signs: A064310.
Bisections: A138413, A138414.
Logarithmic derivative: A072547.

Programs

  • Haskell
    a000957 n = a000957_list !! n
    a000957_list = 0 : 1 :
       (map (`div` 2) $ tail $ zipWith (-) a000108_list a000957_list)
    -- Reinhard Zumkeller, Nov 12 2011
    
  • Magma
    [0,1] cat  [n le 1 select n-1 else (Catalan(n)-Self(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Nov 17 2016
    
  • Maple
    t1 := (1-sqrt(1-4*x))/(3-sqrt(1-4*x)); t2 := series(t1,x,90); A000957 := n- coeff(t2,x,n);
    A000957 := proc(n): if n = 0 then 0 else add((-1)^(n+k-1)*binomial(n+k-1, n-1)*(n-k)/n, k=0..n-1) fi: end: seq(A000957(n), n=0..28); # Johannes W. Meijer, Jul 22 2013
    # third Maple program:
    a:= proc(n) option remember; `if`(n<3, n*(2-n),
          ((7*n-12)*a(n-1)+(4*n-6)*a(n-2))/(2*n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Apr 23 2020
  • Mathematica
    Table[ Plus@@Table[ (-1)^(m+n) (n+m)!/n!/m! (n-m+1)/(n+1), {m, 0, n} ], {n, 0, 36} ] (* Wouter Meeussen *)
    a[0] = 0; a[n_] := (1/2)*(-3*(-1/2)^n + 2^(n+1)*(2n-1)!!* Hypergeometric2F1Regularized[2, 2n+1, n+2, -1]); (* Jean-François Alcover, Feb 22 2012 *)
    Table[2^n (n-2) (2n-1)!! (3 (n-1) Hypergeometric2F1[1, 3-n, 3+n, 2] - n - 2)/(n+2)! + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
  • Maxima
    C(n):=binomial(2*n,n)/(n+1);
    a(n):=if n<=0 then 0 else if n=1 then 1 else  sum(C(n-i-1)*(a(i)+a(i-1)),i,2,n-1);
    /* Vladimir Kruchinin, Apr 23 2020 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( 1 / (1 + 2 / (1 - sqrt(1 - 4*x + x*O(x^n)))), n))}; /* Michael Somos, Sep 17 2006 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( 1 / (1 + 1 / serreverse(x - x^2 + x*O(x^n))), n))}; /* Michael Somos, Sep 30 2006 */
    
  • Python
    from itertools import count, islice
    def A000957_gen(): # generator of terms
        yield from (0,1,0)
        a, c = 0, 1
        for n in count(1):
            yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)
    A000957_list = list(islice(A000957_gen(),20)) # Chai Wah Wu, Apr 26 2023
  • Sage
    def Fine():
        f, c, n = 1, 1, 1
        yield 0
        while True:
            yield f
            n += 1
            c = c * (4*n - 6) // n
            f = (c - f) // 2
    a = Fine()
    print([next(a) for  in range(29)])  # _Peter Luschny, Nov 30 2016
    

Formula

Catalan(n) = 2*a(n+1) + a(n), n >= 1. [Corrected by Pontus von Brömssen, Jul 23 2022]
a(n) = (A064306(n-1) + (-1)^(n-1))/2^n, n >= 1.
G.f.: (1-sqrt(1-4*x))/(3-sqrt(1-4*x)) (compare g.f. for Catalan numbers, A000108). - Emeric Deutsch
a(n) ~ 4^n/(9*n*sqrt(n*Pi)). (Corrected by Peter Luschny, Oct 26 2015.)
a(n) = (2/(n-1))*Sum_{j=0..n-3}(-2)^j*(j+1)*binomial(2n-1, n-3-j), n>=2. - Emeric Deutsch, Dec 26 2003
a(n) = 3*Sum_{j=0..floor((n-1)/2)} binomial(2n-2j-2, n-1) - binomial(2n, n) for n>0. - Emeric Deutsch, Jan 28 2004
Reversion of g.f. (x-2x^2)/(1-x)^2. - Ralf Stephan, Mar 22 2004
a(n) = ((-1)^n/2^n)*(-3/4-(1/4)*sum{k=0..n, C(1/2, k)8^k})+0^n; a(n) = ((-1)^n/2^n)*(-3/4-(1/4)*sum{k=0..n, (-1)^(k-1)*2^k*(2k)!/((k!)^2*(2k-1))})+0^n. - Paul Barry, Jun 10 2005
Hankel determinant transform is 1-n. - Michael Somos, Sep 17 2006
a(n+1) = A126093(n,0). - Philippe Deléham, Mar 05 2007
a(n+1) has g.f. 1/(1-0*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(..... (continued fraction). - Paul Barry, Dec 02 2008
From Paul Barry, Jan 17 2009: (Start)
G.f.: x*c(x)/(1+x*c(x)), c(x) the g.f. of A000108;
a(n+1) = Sum_{k=0..n} (-1)^k*C(2n-k,n-k)*(k+1)/(n+1). (End)
a(n) = 3*(-1/2)^(n+1) + Gamma(n+1/2)*4^n*hypergeom([1, n+1/2],[n+2],-8) /(sqrt(Pi)*(n+1)!) (for n>0). - Mark van Hoeij, Nov 11 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i<=j), and A[i,j] = 0, otherwise. Then, for n>=1, a(n+1) = (-1)^n*charpoly(A,1). - Milan Janjic, Jul 08 2010
a(n) = the upper left term in M^n, n>0; where M = the infinite square production matrix:
0, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
a(n+1) = Sum_{k=0..n} A039598(n,k)*(-2)^k. - Philippe Deléham, Nov 04 2011
D-finite with recurrence: 2*n*a(n) +(12-7*n)*a(n-1) +2*(3-2*n)*a(n-2)=0. - R. J. Mathar, Nov 15 2011
a(n) = sum(sum(2^(s-2n-2k)*(n/n+2k)binomial(n+2k, k)*binomial(s-n-1, s-2n-2k), (k=0, ..., floor((s-2n)/2)), (n=1, ..., s) with s>=2. - José Luis Ramírez Ramírez, Mar 22 2012
0 = a(n)*(16*a(n+1) + 22*a(n+2) - 20*a(n+3)) + a(n+1)*(34*a(n+1) + 53*a(n+2) - 38*a(n+3)) + a(n+2)*(10*a(n+2) + 4*a(n+3)) for all n in Z if we extend by a(0)=-1, a(-n) = -3/4 * (-2)^n if n>0. - Michael Somos, Jan 31 2014 [Corrected by Pontus von Brömssen, Aug 04 2022]
G.f. A(x) satisfies x*A'(x)/A(x) = x + 2*x^3 + 6*x^4 + 22*x^5 + ..., the o.g.f. for A072547. - Peter Bala, Oct 01 2015
a(n) = 2^n*(n-2)*(2*n-1)!!*(3*(n-1)*hypergeom([1,3-n], [3+n], 2)-n-2)/(n+2)! + 0^n. - Vladimir Reshetnikov, Oct 25 2015
a(n) = binomial(2*n,n)*(hypergeom([1,(1-n)/2,1-n/2],[1-n,3/2-n],1)*3/(4-2/n)-1) for n>=2. - Peter Luschny, Oct 26 2015
O.g.f. A(x) satisfies 1 + A(x) = (1 + 3*Sum_{n >= 1} Catalan(n)*x^n)/(1 + 2*Sum_{n >= 1} Catalan(n)*x^n) = (1 + 2*Sum_{n >= 1} binomial(2*n,n)*x^n )/(1 + 3/2*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
a(n) = Sum_{i=2..n-1} C(n-i-1)*(a(i)+a(i-1)), a(0)=0, a(1)=1, where C(n) = A000108(n). - Vladimir Kruchinin, Apr 23 2020

A065601 Number of Dyck paths of length 2n with exactly 1 hill.

Original entry on oeis.org

0, 1, 0, 2, 4, 13, 40, 130, 432, 1466, 5056, 17672, 62460, 222853, 801592, 2903626, 10582816, 38781310, 142805056, 528134764, 1960825672, 7305767602, 27307800400, 102371942932, 384806950624, 1450038737668, 5476570993440, 20727983587220, 78606637060012
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2001

Keywords

Comments

Convolution of A000957(n) with itself gives a(n-1).

Crossrefs

2nd column of A065600. Cf. A000957.

Programs

  • Maple
    b:= proc(x, y, h, z) option remember;
         `if`(x<0 or y b(n$2, true$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2012
    # second Maple program:
    series(((1-sqrt(1-4*x))/(3-sqrt(1-4*x)))^2/x, x=0, 30);  # Mark van Hoeij, Apr 18 2013
  • Mathematica
    CoefficientList[Series[((1-Sqrt[1-4*x])/(3-Sqrt[1-4*x]))^2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
    Table[Sum[(-1)^j*(j+1)*(j+2)*Binomial[2*n-1-j,n],{j,0,n-1}]/(n+1),{n,0,30}] (* Vaclav Kotesovec, May 18 2015 *)

Formula

Reference gives g.f.'s.
Conjecture: 2*(n+1)*a(n) +(-3*n+2)*a(n-1) +2*(-9*n+19)*a(n-2) +4*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Dec 10 2013
a(n) ~ 2^(2*n+3) / (27 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014

Extensions

More terms from Emeric Deutsch, Dec 03 2001

A101371 Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges and k leaves at level 1.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 7, 4, 0, 1, 34, 14, 6, 0, 1, 171, 72, 21, 8, 0, 1, 905, 370, 114, 28, 10, 0, 1, 4952, 1995, 597, 160, 35, 12, 0, 1, 27802, 11064, 3278, 852, 210, 42, 14, 0, 1, 159254, 62774, 18420, 4762, 1135, 264, 49, 16, 0, 1, 927081, 362614, 105618, 27104, 6455, 1446, 322, 56, 18, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 14 2005

Keywords

Comments

Row n has n+1 terms.

Examples

			Triangle begins:
    1;
    0,  1;
    2,  0,  1;
    7,  4,  0, 1;
   34, 14,  6, 0, 1;
  171, 72, 21, 8, 0, 1;
  ...
		

Crossrefs

Columns k=0..2 give A023053, A374835, A374836.
Row sums give A001764.
Cf. A065600.

Programs

  • Maple
    T:=proc(n,k) if k<=n then sum((-1)^i*(k+i+1)*binomial(k+i,i)*binomial(3*n-2*k-2*i,n-k-i)/(2*n-k-i+1),i=0..n-k) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    t[n_, k_] := Sum[(-1)^i*(k + i + 1)/(2n - k - i + 1)*Binomial[k + i, i]* Binomial[3n - 2k - 2i, n - k - i], {i, 0, n - k}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 21 2013, after Maple *)
  • PARI
    T(n, k) = sum(i=0, n-k, (-1)^i*(k+i+1)*binomial(k+i, i)*binomial(3*n-2*k-2*i, n-k-i)/(2*n-k-i+1)); \\ Andrew Howroyd, Nov 06 2017

Formula

T(n, k) = Sum_{i=0..n-k} (-1)^i*((k+i+1)/(2n-k-i+1)) binomial(k+i, i) binomial(3n-2k-2i, n-k-i) for 0 <= k <= n.
G.f.: g/(1+z*g-t*z*g), where g = 1+z*g^3.

A127543 Triangle T(n,k), 0<=k<=n, read by rows given by :[ -1,1,1,1,1,1,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, -1, 1, -1, 1, -2, 0, 2, -1, 1, -6, 2, 1, 3, -1, 1, -18, 5, 7, 2, 4, -1, 1, -57, 17, 19, 13, 3, 5, -1, 1, -186, 56, 64, 36, 20, 4, 6, -1, 1, -622, 190, 212, 124, 56, 28, 5, 7, -1, 1, -2120, 654, 722, 416, 198, 79, 37, 6, 8, -1, 1, -7338, 2282, 2494, 1434, 673, 287, 105, 47, 7, 9, -1, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 01 2007

Keywords

Comments

Riordan array (2/(3-sqrt(1-4*x)), (1-sqrt(1-4*x))/(3-sqrt(1-4*x))). - Philippe Deléham, Jan 27 2014

Examples

			Triangle begins:
    1;
   -1,  1;
    0, -1,  1;
   -1,  1, -1,  1;
   -2,  0,  2, -1,  1;
   -6,  2,  1,  3, -1,  1;
  -18,  5,  7,  2,  4, -1,  1;
  -57, 17, 19, 13,  3,  5, -1, 1;
		

Programs

  • Mathematica
    A065600[n_, k_]:= If[k==n, 1, Sum[j*Binomial[k+j, j]*Binomial[2*(n-k-j), n-k]/(n-k-j), {j,0, Floor[(n-k)/2]}]];
    A127543[n_, k_]:= A065600[n-1,k-1] - A065600[n-1,k];
    Table[A127543[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 17 2021 *)
  • Sage
    def A065600(n,k): return 1 if (k==n) else sum( j*binomial(k+j, j)*binomial(2*(n-k-j), n-k)/(n-k-j) for j in (0..(n-k)//2) )
    def A127543(n,k): return A065600(n-1, k-1) - A065600(n-1, k)
    flatten([[A127543(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 17 2021

Formula

T(n,k) = A065600(n-1,k-1) - A065600(n-1,k).
Sum_{k=0..n} T(n,k)*x^k = A127053(n), A126985(n), A127016(n), A127017(n), A126987(n), A126986(n), A126982(n), A126984(n), A126983(n), A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for n= -8,-7,...,8,9 respectively.
Sum_{j>=0} T(n,j)*A007318(j,k) = A106566(n,k).
Sum_{j>=0} T(n,j)*A038207(j,k) = A039599(n,k).
Sum_{j>=0} T(n,j)*A027465(j,k) = A116395(n,k).

A128937 Triangle formed by reading A039598 mod 2.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 27 2007, May 02 2007

Keywords

Comments

Also triangle formed by reading triangles A052179, A053121, A124575, A126075, A126093.
Also triangle formed by reading A065600 mod 2. - Philippe Deléham, Oct 15 2007

Examples

			Triangle begins:
  1;
  0, 1;
  1, 0, 1;
  0, 0, 0, 1;
  0, 0, 1, 0, 1;
  0, 1, 0, 0, 0, 1;
  1, 0, 1, 0, 1, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 1, 0, 1;
  0, 0, 0, 0, 0, 1, 0, 0, 0, 1;
  0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1;
  0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1;
  0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; ...
		

Crossrefs

Cf. A048896 (row sums).

Programs

Formula

Sum_{k=0..n} T(n,k) = A048896(n).
Sum_{k=0..n} T(n,k)*2^(n-k) = A101692(n). - Philippe Deléham, Oct 09 2007
Sum_{k=0..n} T(n,k)*2^k = A062878(n+1)/3. - Philippe Deléham, Aug 31 2009

A171224 Riordan array (f(x),x*f(x)) where f(x) is the g.f. of A117641.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 11, 6, 3, 0, 1, 42, 23, 9, 4, 0, 1, 167, 90, 36, 12, 5, 0, 1, 684, 365, 144, 50, 15, 6, 0, 1, 2867, 1518, 595, 204, 65, 18, 7, 0, 1, 12240, 6441, 2511, 858, 270, 81, 21, 8, 0, 1, 53043, 27774, 10782, 3672, 1155, 342, 98, 24, 9, 0, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2009

Keywords

Examples

			Triangle begins
    1;
    0,  1;
    1,  0,  1;
    3,  2,  0,  1;
   11,  6,  3,  0,  1;
   42, 23,  9,  4,  0,  1;
  167, 90, 36, 12,  5,  0,  1;
  ...
Production array begins
    0,  1;
    1,  0,  1;
    3,  1,  0,  1;
    9,  3,  1,  0,  1;
   27,  9,  3,  1,  0,  1;
   81, 27,  9,  3,  1,  0,  1;
  243, 81, 27,  9,  3,  1,  0,  1;
  ... - _Philippe Deléham_, Mar 04 2013
		

Crossrefs

Programs

  • Magma
    [[((k+1)/(n+1))*(&+[3^(n-k-2*j)*Binomial(n+1,j)*Binomial(n-k-j-1, n-k-2*j): j in [0..Floor((n-k)/2)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 04 2019
    
  • Mathematica
    T[n_, k_]:= (k+1)/(n+1)*Sum[3^(n-k-2*j)*Binomial[n+1,j]*Binomial[n-k-j-1, n-k-2*j], {j, 0, Floor[(n-k)/2]}]; Table[T[n, k], {n,0,10}, {k,0,n} ]//Flatten (* G. C. Greubel, Apr 04 2019 *)
  • Maxima
    T(n,k):=(k+1)/(n+1)*sum(3^(n-k-2*j)*binomial(n+1,j)*binomial(n-k-j-1,n-k-2*j),j,0,floor((n-k)/2)); /* Vladimir Kruchinin, Apr 04 2019 */
    
  • PARI
    {T(n,k) = ((k+1)/(n+1))*sum(j=0, floor((n-k)/2), 3^(n-k-2*j) *binomial(n+1,j)*binomial(n-k-j-1, n-k-2*j))}; \\ G. C. Greubel, Apr 04 2019
    
  • Sage
    [[((k+1)/(n+1))*sum(3^(n-k-2*j)*binomial(n+1,j)*binomial(n-k-j-1, n-k-2*j) for j in (0..floor((n-k)/2))) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 04 2019

Formula

Sum_{k=0..n} T(n,k)*x^k = A117641(n), A033321(n), A007317(n+1), A002212(n+1), A026378(n+1) for x = 0, 1, 2, 3, 4 respectively.
Triangle equals B*A065600*B^(-1) = B^2*A097609*B^(-2) = B^3*A053121*B^(-3), product considered as infinite lower triangular arrays and B = A007318. - Philippe Deléham, Dec 08 2009
T(n,k) = T(n-1,k-1) + Sum_{i>=0} T(n-1,k+1+i)*3^i, T(0,0) = 1. - Philippe Deléham, Feb 23 2012
T(n,k) = ((k+1)/(n+1))*Sum_{j=0..floor((n-k)/2)} 3^(n-k-2*j)*C(n+1,j)*C(n-k-j-1,n-k-2*j). - Vladimir Kruchinin, Apr 04 2019

Extensions

Terms a(55) onward added by G. C. Greubel, Apr 04 2019

A124394 Inverse of Fine number renewal array.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -2, -2, 0, 1, -3, -4, -3, 0, 1, -4, -5, -6, -4, 0, 1, -5, -4, -6, -8, -5, 0, 1, -6, 0, 0, -6, -10, -6, 0, 1, -7, 8, 14, 8, -5, -12, -7, 0, 1, -8, 21, 36, 36, 20, -3, -14, -8, 0, 1, -9, 40, 63, 72, 65, 36, 0, -16, -9, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 30 2006

Keywords

Comments

Inverse of A065600. Row sums are A057681(n+1). Diagonal sums are A124395.

Examples

			Triangle begins
1,
0, 1,
-1, 0, 1,
-2, -2, 0, 1,
-3, -4, -3, 0, 1,
-4, -5, -6, -4, 0, 1,
-5, -4, -6, -8, -5, 0, 1,
-6, 0, 0, -6, -10, -6, 0, 1
		

Formula

Riordan array ((1-2x)/(1-x)^2,x(1-2x)/(1-x)^2); Number triangle T(n,k)=sum{j=0..k+1, C(k+1,j)C(n-j+k+1,2k+1)(-2)^j};

A294527 Number of Dyck paths of length 2n with exactly 2 hills.

Original entry on oeis.org

0, 0, 1, 0, 3, 6, 21, 66, 220, 744, 2562, 8942, 31569, 112530, 404445, 1464042, 5332872, 19532688, 71893470, 265778040, 986416614, 3674092044, 13729259586, 51455182260, 193369903608, 728504292576, 2750904025276, 10409856537786, 39470613237645, 149935171349546
Offset: 0

Views

Author

Eric M. Schmidt, Nov 01 2017

Keywords

Crossrefs

Column k=2 of A065600. Cf. A000957, A065601.

Programs

  • Mathematica
    a[n_] := Which[n>2, Sum[(i Binomial[i+2, i] Binomial[2n-2i-4, n-2])/(n-i-2), {i, 0, (n-2)/2}], n == 2, 1, True, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 27 2018 *)

Formula

Conjecture: 2*(3*n-5) *(n-2) *(3*n+11) *(n+1) *a(n) -(3*n+11) *(n-3) *(21*n^2-35*n+10) *a(n-1) -2*(3*n+11) *(n-1) *(2*n-1) *(3*n-2) *a(n-2)= 0. - R. J. Mathar, Jun 24 2018

A097877 Triangle read by rows: T(n,k) is the number of Dyck n-paths with k large components, 0 <= k <= n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 12, 1, 1, 34, 7, 1, 98, 32, 1, 1, 294, 124, 10, 1, 919, 448, 61, 1, 1, 2974, 1576, 298, 13, 1, 9891, 5510, 1294, 99, 1, 1, 33604, 19322, 5260, 583, 16, 1, 116103, 68206, 20595, 2960, 146, 1, 1, 406614, 242602, 78954, 13704, 1006, 19, 1, 1440025
Offset: 0

Views

Author

David Callan, Sep 21 2004

Keywords

Comments

A prime Dyck path is one with exactly one return to ground level. Every nonempty Dyck path decomposes uniquely as a concatenation of prime Dyck paths, called its components. For example, UUDDUD has 2 components: UUDD and UD, of semilength 2 and 1 respectively. A large component is one of semilength >= 2.
Conjecture: This is the statistic "indegree" of elements in Pallo's comb posets. For the statistic "outdegree", see A009766. - F. Chapoton, Apr 18 2023

Examples

			T(3,1) = 4 because each of the 5 Dyck paths of semilength 3 has one large component except for UDUDUD, which has none.
Table begins:
  \ k 0, 1, 2, ...
  n\ ____________________
  0 | 1;
  1 | 1;
  2 | 1,   1;
  3 | 1,   4;
  4 | 1,  12,   1;
  5 | 1,  34,   7;
  6 | 1,  98,  32,  1;
  7 | 1, 294, 124, 10;
  8 | 1, 919, 448, 61, 1;
  ...
		

Crossrefs

The Fine distribution (A065600) counts Dyck paths by number of small components (= number of low peaks).

Formula

G.f.: 2/(1 + t*(1 - 4*z)^(1/2) + (1 - 2*z)(1-t)) = Sum_{n>=0, k>=0} T(n, k) z^n t^k satisfies (1-z)*G = 1 + z*t*(CatalanGF[z]-1)*G. The gf for Dyck paths (A000108) with z marking semilength is CatalanGF[z]:=(1 - sqrt[1 - 4*z])/(2*z). Hence the gf for prime Dyck paths is z*CatalanGF[z] and the gf for non-UD prime Dyck paths is S(z):= z*CatalanGF[z]-z. For fixed k, the gf for (T(n, k))_{n>=0} is S(z)^k/(1-z)^(k+1). This is clear because 1/(1-z) is the gf for all-UD Dyck paths (including the empty one) and a Dyck path with k large components is a product (uniquely) of an all-UD, a non-UD prime, an all-UD, a non-UD prime, ... with k non-UD primes and k+1 all-UDs.
Showing 1-10 of 13 results. Next