cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A023053 Number of noncrossing rooted trees with n nodes on a circle that do not have leaves at level 1.

Original entry on oeis.org

1, 0, 2, 7, 34, 171, 905, 4952, 27802, 159254, 927081, 5468960, 32621669, 196422509, 1192294778, 7288208927, 44825586130, 277196752569, 1722454028174, 10749430579118, 67346519863117, 423425225290485, 2670741276559282, 16895070479910967, 107165705513319749, 681438064187707596
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=0 of A101371.

Programs

  • Mathematica
    Table[Sum[(-1)^i*(i+1)*Binomial[3*n-2*i, n-i]/(2*n-i+1), {i,0,n}],{n,0,20}] (* Vaclav Kotesovec, Mar 17 2014 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n, (-1)^k*(k+1)*binomial(3*n-2*k,n-k)/(2*n - k+1)), ", ")) \\ G. C. Greubel, Feb 07 2017
    
  • PARI
    Vec((g->g/(1+x*g))(1 + serreverse(x/(1+x)^3 + O(x^25)))) \\ Andrew Howroyd, Nov 12 2017

Formula

a(n) = Sum_{i=0,..,n} (-1)^i*(i+1)*binomial(3*n-2*i, n-i)/(2*n-i+1).
G.f.: g/(1+zg) where g = 1 + z*g^3, g(0) = 1.
G.f.: g/(1+zg) where g = 2*sin(arcsin(sqrt(27*z)/2)/3)/sqrt(3*z).
G.f.: A(x)=1/(1+x)*(1+6*x/((1+x)*G(0)-6*x)) ; G(k)= 3*x*(3*k+1)*(3*k+2) + (2*k+2)*(2*k+3) - 6*x*(k+1)*(2*k+3)*(3*k+4)*(3*k+5)/G(k+1) ; (continued fraction Euler's kind,1-step ). - Sergei N. Gladkovskii, Dec 29 2011
a(n) ~ 27^(n+3/2) / (121 * sqrt(Pi) * 4^(n+1) * n^(3/2)). - Vaclav Kotesovec, Mar 17 2014
D-finite with recurrence 2*n*(2*n+1)*a(n) +(-47*n^2+65*n-24)*a(n-1) +3*(49*n^2-167*n+148)*a(n-2) +(-65*n^2+365*n-396)*a(n-3) -12*(3*n-5)*(3*n-7)*a(n-4)=0. - R. J. Mathar, Jul 26 2022

Extensions

Offset corrected by Vaclav Kotesovec, Mar 17 2014

A374835 Number of ternary paths of length 3*n having exactly 1 hill.

Original entry on oeis.org

0, 1, 0, 4, 14, 72, 370, 1995, 11064, 62774, 362614, 2125479, 12610410, 75584363, 457000668, 2783991972, 17071362986, 105287143740, 652687596388, 4064618917998, 25416557913498, 159523021737403, 1004594882114020, 6345859437931884, 40198433775513524
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2024

Keywords

Crossrefs

Column k=1 of A101371.

Programs

  • PARI
    a(n) = sum(k=0, n-1, (-1)^k*(k+1)*(k+2)/(2*n-k)*binomial(3*n-2-2*k, n-1-k));

Formula

a(n) = Sum_{k=0..n-1} (-1)^k * (k+1)*(k+2)/(2*n-k) * binomial(3*n-2-2*k,n-1-k).
G.f.: x * (g/(1 + x*g))^2, where g = 1 + x*g^3.

A374836 Number of ternary paths of length 3*n having exactly 2 hills.

Original entry on oeis.org

0, 0, 1, 0, 6, 21, 114, 597, 3278, 18420, 105618, 615331, 3632352, 21678975, 130598887, 793085742, 4849791942, 29838388707, 184573315170, 1147219365762, 7161284719412, 44876343104655, 282206695488603, 1780341161583746, 11264338644455334, 71461150894269030
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2024

Keywords

Crossrefs

Column k=2 of A101371.

Programs

  • PARI
    a(n) = sum(k=0, n-2, (-1)^k*(k+1)*(k+2)*(k+3)/(2*(2*n-1-k))*binomial(3*n-4-2*k, n-2-k));

Formula

a(n) = Sum_{k=0..n-2} (-1)^k * (k+1)*(k+2)*(k+3)/(2*(2*n-1-k)) * binomial(3*n-4-2*k,n-2-k).
G.f.: x^2 * (g/(1 + x*g))^3, where g = 1 + x*g^3.
Showing 1-3 of 3 results.