cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A101371 Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges and k leaves at level 1.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 7, 4, 0, 1, 34, 14, 6, 0, 1, 171, 72, 21, 8, 0, 1, 905, 370, 114, 28, 10, 0, 1, 4952, 1995, 597, 160, 35, 12, 0, 1, 27802, 11064, 3278, 852, 210, 42, 14, 0, 1, 159254, 62774, 18420, 4762, 1135, 264, 49, 16, 0, 1, 927081, 362614, 105618, 27104, 6455, 1446, 322, 56, 18, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Jan 14 2005

Keywords

Comments

Row n has n+1 terms.

Examples

			Triangle begins:
    1;
    0,  1;
    2,  0,  1;
    7,  4,  0, 1;
   34, 14,  6, 0, 1;
  171, 72, 21, 8, 0, 1;
  ...
		

Crossrefs

Columns k=0..2 give A023053, A374835, A374836.
Row sums give A001764.
Cf. A065600.

Programs

  • Maple
    T:=proc(n,k) if k<=n then sum((-1)^i*(k+i+1)*binomial(k+i,i)*binomial(3*n-2*k-2*i,n-k-i)/(2*n-k-i+1),i=0..n-k) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    t[n_, k_] := Sum[(-1)^i*(k + i + 1)/(2n - k - i + 1)*Binomial[k + i, i]* Binomial[3n - 2k - 2i, n - k - i], {i, 0, n - k}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 21 2013, after Maple *)
  • PARI
    T(n, k) = sum(i=0, n-k, (-1)^i*(k+i+1)*binomial(k+i, i)*binomial(3*n-2*k-2*i, n-k-i)/(2*n-k-i+1)); \\ Andrew Howroyd, Nov 06 2017

Formula

T(n, k) = Sum_{i=0..n-k} (-1)^i*((k+i+1)/(2n-k-i+1)) binomial(k+i, i) binomial(3n-2k-2i, n-k-i) for 0 <= k <= n.
G.f.: g/(1+z*g-t*z*g), where g = 1+z*g^3.
Showing 1-1 of 1 results.