A065641 Smallest number with persistence n for the sort-and-subtract-sequence.
0, 1, 10, 60, 90, 101, 120, 380, 450, 505, 807, 1020, 1070, 1303, 1450, 3810, 10020, 10404, 10560, 16056, 16200, 18088, 20322, 20580, 35790, 79000, 80088, 90877, 243700, 279509, 330832, 374330, 380038, 903655, 1002404, 1005064, 1020828
Offset: 0
Examples
60 is the smallest number that needs 3 steps to reach 0: 60 -> 60 - 06 = 54 -> 54 - 45 = 9 -> 9 - 9 = 0, hence a(3) = 60.
Links
- David W. Wilson and Reinhard Zumkeller, Table of n, a(n) for n = 0..100 (a(n) for n = 1..55 from Reinhard Zumkeller).
Programs
-
Haskell
import Data.List (elemIndex) import Data.Maybe (fromJust) a065641 n = a065641_list !! (n-1) a065641_list = map (fromJust . (`elemIndex` a193582_list)) [1..] -- Reinhard Zumkeller,Aug 10 2011
-
Mathematica
Persist[n_] := Length[NestWhileList[# - FromDigits[Sort[IntegerDigits[#]]] &, n, # != 0 &]] - 1; nn = 20; t = Table[0, {nn}]; cnt = 0; k = 0; While[cnt < nn, k++; c = Persist[k]; If[c <= nn && t[[c]] == 0, t[[c]] = k; cnt++]]; t (* Harvey P. Dale, Mar 24 2011 *) persist[n_]:=Length[NestWhileList[#-FromDigits[Sort[IntegerDigits[#]]]&,n,#!=0&]]-1; Module[ {nn=103*10^4,tbl},tbl=Table[{n,persist[n]},{n,0,nn}];DeleteDuplicates[ tbl,GreaterEqual[ #1[[2]],#2[[2]]]&]][[;;,1]] (* Harvey P. Dale, Sep 03 2023 *)
Extensions
Added a(0) = 0. David W. Wilson, Jan 08 2017
Comments