A018837 Number of steps for knight to reach (n,0) on infinite chessboard.
0, 3, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13, 12, 13, 14, 15, 14, 15, 16, 17, 16, 17, 18, 19, 18, 19, 20, 21, 20, 21, 22, 23, 22, 23, 24, 25, 24, 25, 26, 27, 26, 27, 28, 29, 28, 29, 30, 31, 30, 31, 32, 33, 32, 33, 34, 35, 34, 35, 36, 37, 36, 37, 38, 39, 38, 39, 40, 41, 40, 41, 42, 43
Offset: 0
Examples
a(1)=3 counts these moves: (0,0) to (2,1) to (0,2) to (1,0). - _Clark Kimberling_, Dec 20 2010
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Francis N. Castro, Oscar E. González and Luis A. Medina, Generalized exponential sums and the power of computers, Involve, Vol. 11 (2018), Issue 1, pp. 127-142. Also, authors' copy.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[x (3 - x + x^2 - x^3 - 2 x^4 + 2 x^5)/((1-x)^2 (1+x) (1+x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Jan 06 2018 *) Array[Which[#==1,3,True,(#+Mod[#,4])/2]&,100,0] (* Elisha Hollander, Aug 05 2021 *)
-
PARI
concat([0], Vec( x*(3-x+x^2-x^3-2*x^4+2*x^5)/((1-x)^2*(1+x)*(1+x^2)) + O(x^166) ) ) \\ Joerg Arndt, Sep 10 2014
-
Python
def a(n): return 3 if n == 1 else (n + n % 4) // 2 # Elisha Hollander, Aug 05 2021
Formula
a(n) = 2[ (n+2)/4 ] if n even, 2[ (n+1)/4 ]+1 if n odd (n >= 8).
G.f.: x*(3-x+x^2-x^3-2*x^4+2*x^5)/((1-x)^2*(1+x)*(1+x^2)). a(n)=A083219(n), n<>1. - R. J. Mathar, Dec 15 2008
T(0,0)=0, T(1,0)=3, and for m>=1, T(4m-2,0)=2m, T(4m-1,0)=2m+1, T(4m,0)=2m, T(4m+1,0)=2m+1 where T(.,.) = A065775(.,.). - Clark Kimberling, Dec 20 2010
Sum_{n>=1} (-1)^n/a(n) = 5/3 - 2*log(2). - Amiram Eldar, Sep 10 2023
Comments