cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065843 Let u be any string of n digits from {0,1}; let f(u) = number of distinct primes, not beginning with 0, formed by permuting the digits of u to a base-2 number; then a(n) = max_u f(u).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 5, 12, 11, 24, 34, 79, 105, 194, 362, 734, 1143, 2045, 3872, 7758, 13001, 23902, 45539, 90436, 159510, 296210, 563833, 1110387, 2030754, 3876871, 7333827, 14353074, 26730538, 51246344, 97529176, 190928828, 358117285, 694240090, 1324674524, 2587693929, 4903604087, 9547001123
Offset: 1

Views

Author

Sascha Kurz, Nov 24 2001

Keywords

Examples

			a(4)=2 because 1011 and 1101 in base-2 notation are primes (11 and 13) and there is no set of three or more 4-digit primes with a common number of ones.
		

Crossrefs

Programs

  • Maple
    A065843 := proc(n)
        local b,u,udgs,uperm,a;
        b :=2 ;
        a := 0 ;
        for u from b^(n-1) to b^n-1 do
            udgs := convert(u,base,b) ;
            prs := {} ;
            for uperm in combinat[permute](udgs) do
                if op(-1,uperm) <> 0 then
                    p := add( op(i,uperm)*b^(i-1),i=1..nops(uperm)) ;
                    if isprime(p) then
                        prs := prs union {p} ;
                    end if;
                end if;
            end do:
            a := max(a,nops(prs)) ;
        end do:
        a ;
    end proc:
    for n from 1 do
        print(n,A065843(n)) ;
    end do: # R. J. Mathar, Apr 23 2016
  • Mathematica
    c[x_] := Module[{},
       Length[Select[Permutations[x],
         First[#] != 0 && PrimeQ[FromDigits[#, 2]] &]]];
    A065843[n_] := Module[{i},
       Return[Max[Map[c, DeleteDuplicatesBy[Tuples[Range[0, 1], n],
           Table[Count[#, i], {i, 0, 1}] &]]]]];
    Table[A065843[n], {n, 1, 19}] (* Robert Price, Mar 30 2019 *)
  • PARI
    lista(n) = {my(m = matrix(n,n),c); forprime(i=2,2^n, b = binary(i); m[#b,hammingweight(b)]++);vector(n,i,vecmax(m[i,]))} \\ David A. Corneth, Apr 23 2016
    
  • Python
    from sympy import isprime
    from itertools import combinations_with_replacement as mc
    from sympy.utilities.iterables import multiset_permutations as mp
    def a(n): return n-1 if n < 3 else max(sum(1 for p in mp(c) if isprime(int("1"+"".join(p)+"1", 2))) for c in mc("01", n-2))
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Oct 09 2022

Extensions

6 more terms from Sean A. Irvine, Sep 06 2009
a(37)-a(39) from Michael S. Branicky, May 30 2024
a(40)-a(42) from Michael S. Branicky, Jun 14 2024