A065845 Let u be any string of n digits from {0,...,3}; let f(u) = number of distinct primes, not beginning with 0, formed by permuting the digits of u to a base-4 number; then a(n) = max_u f(u).
1, 2, 3, 6, 13, 36, 96, 253, 765, 2683, 7385, 25075, 83150, 293063, 888689, 3161645, 11097301, 40328876, 129951350, 469528189, 1694632516
Offset: 1
Examples
a(2)=2 because 13 and 31 (written in base 4) are primes (7 and 13).
Crossrefs
Programs
-
Maple
A065845 := proc(n) local b,u,udgs,uperm,a; b :=4 ; a := 0 ; for u from b^(n-1) to b^n-1 do udgs := convert(u,base,b) ; prs := {} ; for uperm in combinat[permute](udgs) do if op(-1,uperm) <> 0 then p := add( op(i,uperm)*b^(i-1),i=1..nops(uperm)) ; if isprime(p) then prs := prs union {p} ; end if; end if; end do: a := max(a,nops(prs)) ; end do: a ; end proc: for n from 1 do print(n,A065845(n)) ; end do: # R. J. Mathar, Apr 23 2016
-
Mathematica
c[x_] := Module[{}, Length[Select[Permutations[x], First[#] != 0 && PrimeQ[FromDigits[#, 4]] &]]]; A065845[n_] := Module[{i}, Return[Max[Map[c, DeleteDuplicatesBy[Tuples[Range[0, 3], n], Table[Count[#, i], {i, 0, 3}] &]]]]]; Table[A065845[n], {n, 1, 10}] (* Robert Price, Mar 30 2019 *)
Extensions
3 more terms from Sean A. Irvine, Sep 06 2009
Definition corrected by David A. Corneth, Apr 23 2016
a(19) from Michael S. Branicky, May 29 2024
a(20)-a(21) from Michael S. Branicky, Jun 14 2024