A065847 Let u be any string of n digits from {0,...,5}; let f(u) = number of distinct primes, not beginning with 0, formed by permuting the digits of u to a base-6 number; then a(n) = max_u f(u).
1, 2, 4, 8, 21, 60, 269, 1147, 4250, 17883, 71966, 342060, 1724337, 8428101, 37186164, 175845403
Offset: 1
Examples
a(2)=2 because 15 and 51 (written in base 6) are primes (11 and 31).
Crossrefs
Programs
-
Maple
A065847 := proc(n) local b,u,udgs,uperm,a; b :=6 ; a := 0 ; for u from b^(n-1) to b^n-1 do udgs := convert(u,base,b) ; prs := {} ; for uperm in combinat[permute](udgs) do if op(-1,uperm) <> 0 then p := add( op(i,uperm)*b^(i-1),i=1..nops(uperm)) ; if isprime(p) then prs := prs union {p} ; end if; end if; end do: a := max(a,nops(prs)) ; end do: a ; end proc: for n from 1 do print(n,A065847(n)) ; end do: # R. J. Mathar, Apr 23 2016
-
Mathematica
c[x_] := Module[{}, Length[Select[Permutations[x], First[#] != 0 && PrimeQ[FromDigits[#, 6]] &]]]; A065847[n_] := Module[{i}, Return[Max[Map[c, DeleteDuplicatesBy[Tuples[Range[0, 5], n], Table[Count[#, i], {i, 0, 5}] &]]]]]; Table[A065847[n], {n, 1, 8}] (* Robert Price, Mar 30 2019 *)
-
Python
from sympy import isprime from sympy.utilities.iterables import multiset_permutations from itertools import combinations_with_replacement def A065847(n): return max(sum(1 for t in multiset_permutations(s) if t[0] != '0' and isprime(int(''.join(t),6))) for s in combinations_with_replacement('012345',n)) # Chai Wah Wu, Apr 23 2019
Extensions
a(12)-a(13) from Sean A. Irvine, Sep 06 2009
Definition corrected by David A. Corneth, Apr 23 2016
a(14) from Chai Wah Wu, Jun 15 2019
a(15) from Michael S. Branicky, Jun 25 2024
a(16) from Michael S. Branicky, Jul 02 2024