cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065862 Remainder when n-th composite number is divided by the number of nonprimes not exceeding n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 3, 1, 0, 2, 0, 1, 0, 7, 6, 7, 6, 8, 8, 7, 6, 7, 6, 6, 5, 4, 4, 6, 5, 6, 6, 5, 4, 3, 2, 4, 3, 2, 1, 2, 2, 4, 3, 2, 1, 2, 2, 1, 0, 0, 0, 1, 0, 38, 38, 39, 39, 40, 41, 42, 42, 42, 42, 43, 43, 44, 44, 44, 44, 45, 46, 47, 47, 48, 49, 49, 49, 51, 52, 52, 52, 54, 54, 54, 54, 54
Offset: 1

Views

Author

Labos Elemer, Nov 26 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=150,cmps,len},cmps=Select[Range[nn],CompositeQ];len=Length[ cmps];Mod[#[[1]],#[[2]]-PrimePi[#[[2]]]]&/@Thread[{cmps,Range[len]}]] (* Harvey P. Dale, Feb 21 2020 *)
  • PARI
    Composite(n) = { local(k); k=n + primepi(n) + 1; while (k != n + primepi(k) + 1, k = n + primepi(k) + 1); return(k) } { for (n = 1, 1000, a=Composite(n)%(n - primepi(n)); write("b065862.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 02 2009

Formula

a(n) = c(n) mod (n - pi(n)) = A002808(n) mod (n - A000720(n)) = A002808(n) mod A062298(n).