cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065881 Ultimate modulo 10: right-hand nonzero digit of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 7, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Henry Bottomley, Nov 26 2001

Keywords

Examples

			a(3)=3, a(23)=3, a(30)=3, a(12300)=3.
		

Crossrefs

In base 2 this is A000012, base 3 A060236 and base 4 A065882. For n <= 100 this sequence is also "Remove final zeros from n" which in bases 2, 3 and 4 produces A000265, A038502 and A065883. Cf. A010879.

Programs

  • Mathematica
    um10[n_]:=Module[{idns=Split[IntegerDigits[n]]},If[idns[[-1,1]] == 0, idns[[-2,1]], idns[[-1,1]]]]; Array[um10,110] (* Harvey P. Dale, Dec 26 2016 *)
  • PARI
    a(n) = { n/10^valuation(n,10)%10 } \\ Harry J. Smith, Nov 03 2009
    
  • Python
    def A065881(n): return int(str(n).rstrip('0')[-1]) # Chai Wah Wu, Dec 07 2023

Formula

If n mod 10 = 0 then a(n) = a(n/10), otherwise a(n) = n mod 10.