A065887 Smallest number whose square is divisible by n!.
1, 1, 2, 6, 12, 60, 60, 420, 1680, 5040, 5040, 55440, 332640, 4324320, 8648640, 43243200, 172972800, 2940537600, 8821612800, 167610643200, 335221286400, 7039647014400, 14079294028800, 323823762662400, 647647525324800, 3238237626624000, 6476475253248000
Offset: 0
Keywords
Examples
a(10) = 5040 since 10! = 3628800 and the smallest square divisible by this is 25401600 = 3628800*7 = 5040^2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..735 (first 101 terms from Kevin P. Thompson)
Programs
-
Maple
a:= n-> mul(i[1]^ceil(i[2]/2), i=ifactors(n!)[2]): seq(a(n), n=0..26); # Alois P. Heinz, Jan 24 2022
-
Mathematica
f[p_, e_] := p^Ceiling[e/2]; a[0] = a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30, 0] (* Amiram Eldar, Feb 11 2024 *)
Extensions
Missing a(0) inserted, formula corrected, and a(25)-a(26) added by Kevin P. Thompson, Jan 24 2022