cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A232098 a(n) is the largest m such that m! divides n^2; a(n) = A055881(n^2).

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2013

Keywords

Comments

For all n, A055881(n) <= a(n), and probably also a(n) <= A055874(n).
Moreover, a(n) > A055881(n) if and only if A055874(n) > A055881(n), thus A055926 gives (also) all the positions where this sequence differs from A055881. Please see Comments section in A055926 for the proof.
Differs from A055874 for the first time at n=840, where a(840)=7, while A055874(840)=8. A232099 gives all the positions where such differences occur.

Crossrefs

Programs

  • Mathematica
    Module[{nn=10,fct},fct=Table[{f,f!},{f,nn}];Table[Select[fct,Mod[n^2,#[[2]]]==0&][[-1,1]],{n,90}]] (* Harvey P. Dale, Aug 11 2024 *)
  • Scheme
    (define (A232098 n) (A055881 (A000290 n)))

Formula

a(n) = A055881(A000290(n)) = A055881(n^2).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A065887(k) = 1.78672776922161809767... . - Amiram Eldar, Jan 01 2024

A065886 Smallest square divisible by n!.

Original entry on oeis.org

1, 1, 4, 36, 144, 3600, 3600, 176400, 2822400, 25401600, 25401600, 3073593600, 110649369600, 18699743462400, 74798973849600, 1869974346240000, 29919589539840000, 8646761377013760000, 77820852393123840000, 28093327713917706240000, 112373310855670824960000
Offset: 0

Views

Author

Henry Bottomley, Nov 27 2001

Keywords

Examples

			a(10) = 25401600 since 10! = 3628800 and the smallest square divisible by this is 25401600 = 3628800*7 = 5040^2
		

Programs

  • Maple
    N:= 50: # to get a(0)..a(N)
    P:= select(isprime, [$2..N]):
    nP:= nops(P):
    V:= Vector(nP):
    A[0]:= 1:
    for n from 1 to N do
      for i from 1 to nP do V[i]:= V[i] + padic:-ordp(n,P[i]) od;
      A[n]:= mul(P[i]^(2*ceil(V[i]/2)),i=1..nP)
    od:
    seq(A[n],n=0..N); # Robert Israel, Jan 30 2017
  • Mathematica
    ssd[n_]:=Module[{nf=n!,k=1},While[!IntegerQ[Sqrt[k*nf]],k++];k*nf]; Array[ssd,20,0] (* Harvey P. Dale, Apr 29 2012 *)

Formula

a(n) = A053143(A000142(n)) = A065887(n)^2 = A000142(n)*A055204(n) = A001044(n)/A055071(n)
Showing 1-2 of 2 results.