A065887
Smallest number whose square is divisible by n!.
Original entry on oeis.org
1, 1, 2, 6, 12, 60, 60, 420, 1680, 5040, 5040, 55440, 332640, 4324320, 8648640, 43243200, 172972800, 2940537600, 8821612800, 167610643200, 335221286400, 7039647014400, 14079294028800, 323823762662400, 647647525324800, 3238237626624000, 6476475253248000
Offset: 0
a(10) = 5040 since 10! = 3628800 and the smallest square divisible by this is 25401600 = 3628800*7 = 5040^2.
-
a:= n-> mul(i[1]^ceil(i[2]/2), i=ifactors(n!)[2]):
seq(a(n), n=0..26); # Alois P. Heinz, Jan 24 2022
-
f[p_, e_] := p^Ceiling[e/2]; a[0] = a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30, 0] (* Amiram Eldar, Feb 11 2024 *)
Missing a(0) inserted, formula corrected, and a(25)-a(26) added by
Kevin P. Thompson, Jan 24 2022
A250029
Maximum number of binary strings with symmetrically partitioned n 1's and n 0's, counted up to isomorphism.
Original entry on oeis.org
1, 1, 1, 4, 9, 16, 36, 144, 400, 900, 3600, 11025, 28224, 78400, 254016, 705600, 2286144, 6350400, 25401600, 85377600, 250905600, 768398400, 3073593600, 10600761600, 32464832400, 129859329600, 456536705625
Offset: 0
n=0 gives the empty string.
n=1 and the only possible partition generate 01 (and the isomorphic 10).
For n=2, both possible partitions generate, up to isomorphism, 1 string, 0011 (1100), and respectively 0101 (1010).
For n=3, the optimal partition is {1,2}, generating, up to isomorphism, 4 strings: 001011 (110100), 001101 (110010), 010011 (101100) and 011001 (100110).
For n=4, the optimal partition is {1,1,2}, generating, up to isomorphism, 9 strings: 00101011 (11010100), 00101101 (11010010), 00110101 (11001010), 01001011 (10110100), 01001101 (10110010), 01010011 (10101100), 01011001 (10100110), 01100101 (10011010) and 01101001 (10010110).
-
dualseq[p_]:=Factorial[Length[p]]^2/Apply[Times,Map[Factorial[Count[p,#1]]&,Range[Max[Length[p]]]]]^2
a[n_]:=Max[Map[dualseq,IntegerPartitions[n]]]
Table[a[n],{n,0,25}] (* after A130670 *)
Showing 1-2 of 2 results.
Comments