cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065960 a(n) = n^4*Product_{distinct primes p dividing n} (1+1/p^4).

Original entry on oeis.org

1, 17, 82, 272, 626, 1394, 2402, 4352, 6642, 10642, 14642, 22304, 28562, 40834, 51332, 69632, 83522, 112914, 130322, 170272, 196964, 248914, 279842, 356864, 391250, 485554, 538002, 653344, 707282, 872644, 923522, 1114112, 1200644
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

Crossrefs

Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), this sequence (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Maple
    A065960 := proc(n) n^4*mul(1+1/p^4,p=numtheory[factorset](n)) ; end proc:
    seq(A065960(n),n=1..20) ; # R. J. Mathar, Jun 06 2011
  • Mathematica
    a[n_] := n^4*DivisorSum[n, MoebiusMu[#]^2/#^4&]; Array[a, 40] (* Jean-François Alcover, Dec 01 2015 *)
    f[p_, e_] := p^(4*e) + p^(4*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(n^4*sumdiv(n,d,moebius(d)^2/d^4),","))

Formula

Multiplicative with a(p^e) = p^(4*e)+p^(4*e-4). - Vladeta Jovovic, Dec 09 2001
a(n) = n^4 * Sum_{d|n} mu(d)^2/d^4. - Benoit Cloitre, Apr 07 2002
a(n) = J_8(n)/J_4(n) = A069093(n)/A059377(n), where J_k is the k-th Jordan Totient Function. - Enrique Pérez Herrero, Aug 29 2010
Dirichlet g.f.: zeta(s)*zeta(s-4)/zeta(2*s). - R. J. Mathar, Jun 06 2011
From Vaclav Kotesovec, Sep 19 2020: (Start)
Sum_{k=1..n} a(k) ~ 18711*zeta(5)*n^5 / Pi^10.
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^4/(p^8-1)) = 1.078178802583045599985995264729541574821218371712364313741065126120993131... (End)