A066012 Highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105681.
2, 2, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 6, 6, 8, 6, 8, 6, 8, 8, 8, 10, 10
Offset: 1
Links
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).