A066037 Number of (undirected) Hamiltonian cycles in the binary n-cube, or the number of cyclic n-bit Gray codes.
1, 1, 6, 1344, 906545760, 35838213722570883870720
Offset: 1
Examples
The 2-cube has a single cycle consisting of all 4 edges.
Links
- Michel Deza and Roman Shklyar, Enumeration of Hamiltonian Cycles in 6-cube, arXiv:1003.4391 [cs.DM], 2010. [There may be errors - see Haanpaa and Ostergard, 2012]
- R. J. Douglas, Bounds on the number of Hamiltonian circuits in the n-cube, Discrete Mathematics, 17 (1977), 143-146.
- Harri Haanpaa and Patric R. J. Östergård, Counting Hamiltonian cycles in bipartite graphs, Math. Comp. 83 (2014), 979-995.
- Harary, Hayes, and Wu, A survey of the theory of hypercube graphs, Computers and Mathematics with Applications, 15(4), 1988, 277-289.
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle
- Eric Weisstein's World of Mathematics, Hypercube Graph
Crossrefs
Programs
-
Mathematica
Prepend[Table[Length[FindHamiltonianCycle[HypercubeGraph[n], All]], {n, 2, 4}], 1] (* Eric W. Weisstein, Apr 01 2017 *)
Extensions
a(6) from Michel Deza, Mar 28 2010
a(6) corrected by Haanpaa and Östergård, 2012. - N. J. A. Sloane, Sep 06 2012
Name clarified by Eric W. Weisstein, May 06 2019
Comments