A066073 Composite numbers k such that sigma(k) - 1 is prime.
6, 10, 14, 15, 20, 21, 24, 26, 30, 33, 34, 35, 38, 40, 44, 46, 51, 52, 55, 57, 58, 60, 63, 65, 74, 76, 78, 84, 85, 86, 88, 90, 92, 93, 96, 105, 111, 114, 117, 118, 120, 123, 124, 126, 130, 135, 136, 141, 143, 145, 147, 153, 155, 158, 161, 164, 166, 168, 172, 174
Offset: 1
Examples
30, 46, 51, and 55 are in the sequence because each is a composite number n such that sigma(n)-1 = 71, which is prime; 71 itself is excluded from the sequence by definition.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
Crossrefs
Programs
-
Maple
filter:= proc(n) local s; s:= numtheory:-sigma(n)-1; s > n and isprime(s); end proc: select(filter, [$2..1000]); # Robert Israel, Dec 22 2014
-
Mathematica
Do[s=-1+DivisorSigma[1, m]; If[PrimeQ[s]&&!PrimeQ[m], Print[m]], {m, 1, 256}] Select[Range[200],CompositeQ[#]&&PrimeQ[DivisorSigma[1,#]-1]&] (* Harvey P. Dale, Jan 13 2025 *)
-
PARI
isA066073(n)=!isprime(n)&&isprime(sigma(n)-1) \\ Charles R Greathouse IV, Feb 20 2012
-
Sage
[n for n in (2..174) if (sigma(n)-1).is_prime() and sigma(n)-1>n] # Giuseppe Coppoletta, Dec 22 2014
Comments