A066086 Greatest common divisor of product (p-1) and product (p+1), where p ranges over distinct prime divisors of n; a(n) = gcd(A048250(n), A173557(n)).
1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 6, 8, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 6, 2, 6, 2, 8, 2, 1, 4, 2, 24, 2, 2, 6, 8, 2, 2, 12, 2, 2, 8, 2, 2, 2, 2, 2, 8, 6, 2, 2, 8, 6, 4, 2, 2, 8, 2, 6, 4, 1, 12, 4, 2, 2, 4, 24, 2, 2, 2, 6, 8, 6, 12, 24, 2, 2, 2, 2, 2, 12, 4, 6, 8, 2, 2, 8, 8, 2, 4, 2, 24, 2, 2, 6, 4
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..23374
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Crossrefs
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Table[g2[w], {w, 1, 128}] a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, GCD[Times@@((#-1)& @@@ f), Times@@((#+1)& @@@ f)]]]; Array[a, 100] (* Amiram Eldar, Dec 05 2018 *)
-
PARI
a(n)=my(f=factor(n)[,1]);gcd(prod(i=1,#f,f[i]+1),prod(i=1,#f,f[i]-1)) \\ Charles R Greathouse IV, Feb 14 2013
Formula
Extensions
Name edited, part of the old name transferred to the formula section by Antti Karttunen, Dec 04 2018
Comments