cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066086 Greatest common divisor of product (p-1) and product (p+1), where p ranges over distinct prime divisors of n; a(n) = gcd(A048250(n), A173557(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 6, 8, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 6, 2, 6, 2, 8, 2, 1, 4, 2, 24, 2, 2, 6, 8, 2, 2, 12, 2, 2, 8, 2, 2, 2, 2, 2, 8, 6, 2, 2, 8, 6, 4, 2, 2, 8, 2, 6, 4, 1, 12, 4, 2, 2, 4, 24, 2, 2, 2, 6, 8, 6, 12, 24, 2, 2, 2, 2, 2, 12, 4, 6, 8, 2, 2, 8, 8, 2, 4, 2, 24, 2, 2, 6, 4
Offset: 1

Views

Author

Labos Elemer, Dec 04 2001

Keywords

Comments

Frequently equal, but not identical, to A009223 (i.e. GCD of sigma and phi of n).

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Table[g2[w], {w, 1, 128}]
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, GCD[Times@@((#-1)& @@@ f), Times@@((#+1)& @@@ f)]]]; Array[a, 100] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    a(n)=my(f=factor(n)[,1]);gcd(prod(i=1,#f,f[i]+1),prod(i=1,#f,f[i]-1)) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = gcd(A048250(n), A023900(n)) = gcd(A000203(A007947(n)), A000010(A007947(n))).
a(n) = A322360(n) / A322359(n). - Antti Karttunen, Dec 04 2018

Extensions

Name edited, part of the old name transferred to the formula section by Antti Karttunen, Dec 04 2018