cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A076485 Solutions to gcd(sigma(x), phi(x)) > gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) > A066086(x) or if A066087(x) > 0.

Original entry on oeis.org

12, 18, 24, 44, 48, 49, 54, 56, 72, 88, 92, 96, 99, 108, 112, 116, 125, 132, 135, 140, 147, 152, 162, 168, 169, 172, 176, 184, 188, 192, 196, 198, 200, 207, 216, 224, 236, 248, 250, 264, 270, 276, 280, 284, 288, 297, 308, 328, 332, 336, 344, 348, 352, 361
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Examples

			For n=12: sigma(12)=28, phi(12)=4, gcd(28,4)=4 core(12)=6, sigma(6)=12, phi(6)=2, gcd(12,2)=2.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Greater[s1, s2], Print[n]], {n, 1, 256}]

A076486 Solutions to gcd(sigma(x), phi(x)) < gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) < A066086(x) or if A066087(x) < 0.

Original entry on oeis.org

9, 25, 28, 36, 45, 50, 52, 75, 76, 81, 84, 90, 98, 100, 117, 121, 124, 144, 148, 150, 153, 156, 175, 180, 208, 225, 228, 234, 242, 244, 245, 252, 261, 268, 275, 289, 292, 300, 304, 306, 316, 324, 325, 333, 338, 360, 364, 369, 372, 380, 388, 392, 400, 405, 412
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Examples

			For n=9: sigma(9)=13, phi(9)=6, gcd(13,6)=1, core(9)=3, sigma(3)=4, phi(3)=2, gcd(4,2)=2.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Greater[s2, s1], Print[n]], {n, 1, 256}]

A076487 Solutions to gcd(sigma(x), phi(x)) = gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) = A066086(x) or if A066087(x) = 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Comments

The squarefree numbers are a subset of this sequence.

Examples

			For n=20: sigma(20)=42, phi(20)=8, gcd(42,8)=2, core(20)=10, sigma(10)=18, phi(10)=4, gcd(18,4)=2, so A009223(20) = A066086(20)=2.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Equal[s2, s1], Print[n]], {n, 1, 256}]
  • PARI
    isok(n) = my(c=core(n)); gcd(sigma(n), eulerphi(n)) == gcd(sigma(c), eulerphi(c)); \\ Michel Marcus, Jul 30 2017

A076488 Nonsquarefree solutions to gcd(sigma(x), phi(x)) = gcd(sigma(core(x)), Phi(core(x))), i.e., when A009223(x) = A066086(x) or if A066087(x)=0 and mu(x)=0.

Original entry on oeis.org

4, 8, 16, 20, 27, 32, 40, 60, 63, 64, 68, 80, 104, 120, 126, 128, 136, 160, 164, 171, 189, 204, 212, 220, 232, 240, 243, 256, 260, 272, 279, 294, 296, 312, 315, 320, 340, 342, 343, 350, 351, 356, 363, 375, 378, 387, 404, 408, 416, 424, 464, 476, 480, 492, 512
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Examples

			n=60: sigma(60)=168, phi(60)=16, gcd(168,16)=8, core(60)=30, sigma(30)=72, phi(30)=8, gcd(72,8)=8, so A009223(60)=A066086(60)=8.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Equal[s2, s1]&&Equal[MoebiusMu[n], 0], Print[n]], {n, 1, 1024}]

A322591 Lexicographically earliest such sequence a that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = 0 for odd primes, and A007947(n) for any other number.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 2, 5, 6, 3, 4, 3, 7, 8, 2, 3, 4, 3, 6, 9, 10, 3, 4, 11, 12, 5, 7, 3, 13, 3, 2, 14, 15, 16, 4, 3, 17, 18, 6, 3, 19, 3, 10, 8, 20, 3, 4, 21, 6, 22, 12, 3, 4, 23, 7, 24, 25, 3, 13, 3, 26, 9, 2, 27, 28, 3, 15, 29, 30, 3, 4, 3, 31, 8, 17, 32, 33, 3, 6, 5, 34, 3, 19, 35, 36, 37, 10, 3, 13, 38, 20, 39, 40, 41, 4, 3, 7, 14, 6, 3, 42, 3, 12, 43
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2018

Keywords

Comments

For all i, j:
a(i) = a(j) => A066086(i) = A066086(j),
a(i) = a(j) => A322354(i) = A322354(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007947(n) = factorback(factorint(n)[, 1]);
    Aux322591(n) = if((n>2)&&isprime(n),0,A007947(n));
    v322591 = rgs_transform(vector(up_to, n, Aux322591(n)));
    A322591(n) = v322591[n];

A322320 a(n) = gcd(A003557(n), A173557(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, GCD[ Times@@ (First[#] ^(Last[#]-1)& /@  f), Times@@((#-1)& @@@ f)]]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A322320(n) = gcd(A173557(n), A003557(n));

Formula

a(n) = gcd(A003557(n), A173557(n)) = gcd(A322351(n), A322352(n)).
a(n) = A000010(n) / A322321(n).

A322360 Multiplicative with a(p^e) = p^2 - 1.

Original entry on oeis.org

1, 3, 8, 3, 24, 24, 48, 3, 8, 72, 120, 24, 168, 144, 192, 3, 288, 24, 360, 72, 384, 360, 528, 24, 24, 504, 8, 144, 840, 576, 960, 3, 960, 864, 1152, 24, 1368, 1080, 1344, 72, 1680, 1152, 1848, 360, 192, 1584, 2208, 24, 48, 72, 2304, 504, 2808, 24, 2880, 144, 2880, 2520, 3480, 576, 3720, 2880, 384, 3, 4032, 2880
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2018

Keywords

Comments

Absolute values of A046970, the Dirichlet inverse of the Jordan function J_2 (A007434).
Absolute values of the Möbius transform of A055491. (See Benoit Cloitre's May 31 2002 comment in A046970).

Crossrefs

Absolute values of A046970.

Programs

  • Maple
    a:= n-> mul(i[1]^2-1, i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 05 2021
  • Mathematica
    a[n_] := If[n==1, 1, Times @@ ((#^2-1)& @@@ FactorInteger[n])]; Array[a, 50]  (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A322360(n) = factorback(apply(p -> (p*p)-1, factor(n)[, 1]));
    
  • PARI
    A322360(n) = abs(sumdiv(n,d,moebius(n/d)*(core(d)^2)));

Formula

Multiplicative with a(p^e) = p^2 - 1.
a(n) = Product_{p prime divides n} (p^2 - 1).
a(n) = abs(A046970(n)).
a(n) = A048250(n) * A173557(n) = A066086(n) * A322359(n).
G.f. for a signed version of the sequence: Sum_{n >= 1} mu(n)*n^2*x^n/(1 - x^n) = Sum_{n >= 1} (-1)^omega(n)*a(n)*x^n = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + 72*x^10 - ..., where mu(n) is the Möbius function A008683(n) and omega(n) = A001221(n) is the number of distinct primes dividing n. - Peter Bala, Mar 05 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (p-1)*(p^2 + 2*p + 2)/(p*(p^2 + p + 1)) = 0.187556464... . - Amiram Eldar, Oct 22 2022
a(n) = A007434(A007947(n)). - Enrique Pérez Herrero, Oct 14 2024

A322362 a(n) = gcd(n, A166590(n)), where A166590 is completely multiplicative with a(p) = p+2 for prime p.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 5, 16, 1, 2, 1, 4, 3, 2, 1, 8, 1, 2, 1, 4, 1, 10, 1, 32, 1, 2, 7, 4, 1, 2, 3, 8, 1, 6, 1, 4, 5, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 20, 1, 2, 9, 64, 5, 2, 1, 4, 1, 14, 1, 8, 1, 2, 5, 4, 1, 6, 1, 16, 1, 2, 1, 12, 1, 2, 1, 8, 1, 10, 1, 4, 3, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8, 105
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, GCD[n, Times@@ ((First[#]+2)^Last[#] &/@FactorInteger[n])]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018~ *)
  • PARI
    A166590(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] += 2); factorback(f); };
    A322362(n) = gcd(n, A166590(n));

Formula

a(n) = gcd(n, A166590(n)).
a(A037074(n)) = A006512(n).

A066087 a(n) = gcd(sigma(n), phi(n)) - gcd(sigma(rad(n)), phi(rad(n))); rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, -1, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 2, 1, -1, 0, -4, 0, 4, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -4, -2, 0, 0, 0, 0, -1, 0, 0, -4, 0, 0, 0, 18, 0, -2, 0, 2, 0, 0, 0, 2, 0, -3, 8, -1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 12, -6
Offset: 1

Views

Author

Labos Elemer, Dec 04 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[1, n], EulerPhi@ n] - GCD[DivisorSigma[1, #], EulerPhi@ #] &[Times @@ FactorInteger[n][[All, 1]]], {n, 120}] (* Michael De Vlieger, Feb 19 2017 *)
  • PARI
    rad(f)=for(i=1,#f~,f[i,2]=1); f
    g(f)=gcd(sigma(f),eulerphi(f))
    a(n)=my(f=factor(n),k=rad(f)); g(f)-g(k) \\ Charles R Greathouse IV, Dec 09 2013

Formula

A009223(n) - A066086(n) = gcd(sigma(n), phi(n)) - gcd(sigma(A007947(n)), phi(A007947(n))).

A322318 a(n) = gcd(A003557(n), A048250(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 3, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, GCD[ Times@@ (First[#] ^(Last[#]-1)& /@  f), Times@@((#+1)& @@@ f)]]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
    A322318(n) = gcd(A048250(n), A003557(n));

Formula

a(n) = gcd(A003557(n), A048250(n)).
a(n) = A001615(n) / A322319(n).
Showing 1-10 of 15 results. Next