cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A046970 Dirichlet inverse of the Jordan function J_2 (A007434).

Original entry on oeis.org

1, -3, -8, -3, -24, 24, -48, -3, -8, 72, -120, 24, -168, 144, 192, -3, -288, 24, -360, 72, 384, 360, -528, 24, -24, 504, -8, 144, -840, -576, -960, -3, 960, 864, 1152, 24, -1368, 1080, 1344, 72, -1680, -1152, -1848, 360, 192, 1584, -2208, 24, -48, 72, 2304, 504, -2808, 24, 2880, 144, 2880, 2520, -3480, -576
Offset: 1

Views

Author

Douglas Stoll, dougstoll(AT)email.msn.com

Keywords

Comments

B(n+2) = -B(n)*((n+2)*(n+1)/(4*Pi^2))*z(n+2)/z(n) = -B(n)*((n+2)*(n+1)/(4*Pi^2)) * Sum_{j>=1} a(j)/j^(n+2).
Apart from signs also Sum_{d|n} core(d)^2*mu(n/d) where core(x) is the squarefree part of x. - Benoit Cloitre, May 31 2002

Examples

			a(3) = -8 because the divisors of 3 are {1, 3} and mu(1)*1^2 + mu(3)*3^2 = -8.
a(4) = -3 because the divisors of 4 are {1, 2, 4} and mu(1)*1^2 + mu(2)*2^2 + mu(4)*4^2 = -3.
E.g., a(15) = (3^2 - 1) * (5^2 - 1) = 8*24 = 192. - _Jon Perry_, Aug 24 2010
G.f. = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965, pp. 805-811.
  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, p. 48.

Crossrefs

Dirichlet inverse of Jordan totient function J_r(n): A023900 (r = 1), A063453(r = 3), A189922 (r = 4).

Programs

  • Haskell
    a046970 = product . map ((1 -) . (^ 2)) . a027748_row
    -- Reinhard Zumkeller, Jan 19 2012
    
  • Maple
    Jinvk := proc(n,k) local a,f,p ; a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; a := a*(1-p^k) ; end do: a ; end proc:
    A046970 := proc(n) Jinvk(n,2) ; end proc: # R. J. Mathar, Jul 04 2011
  • Mathematica
    muDD[d_] := MoebiusMu[d]*d^2; Table[Plus @@ muDD[Divisors[n]], {n, 60}] (Lopez)
    Flatten[Table[{ x = FactorInteger[n]; p = 1; For[i = 1, i <= Length[x], i++, p = p*(1 - x[[i]][[1]]^2)]; p}, {n, 1, 50, 1}]] (* Jon Perry, Aug 24 2010 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^2 MoebiusMu[ d], {d, Divisors @ n}]]; (* Michael Somos, Jan 11 2014 *)
    a[ n_] := If[ n < 2, Boole[ n == 1], Times @@ (1 - #[[1]]^2 & /@ FactorInteger @ n)]; (* Michael Somos, Jan 11 2014 *)
  • PARI
    A046970(n)=sumdiv(n,d,d^2*moebius(d)) \\ Benoit Cloitre
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 - X*p^2) / (1 - X))[n])}; /* Michael Somos, Jan 11 2014 */
    
  • Python
    from math import prod
    from sympy import primefactors
    def A046970(n): return prod(1-p**2 for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023

Formula

Multiplicative with a(p^e) = 1 - p^2.
a(n) = Sum_{d|n} mu(d)*d^2.
abs(a(n)) = Product_{p prime divides n} (p^2 - 1). - Jon Perry, Aug 24 2010
From Wolfdieter Lang, Jun 16 2011: (Start)
Dirichlet g.f.: zeta(s)/zeta(s-2).
a(n) = J_{-2}(n)*n^2, with the Jordan function J_k(n), with J_k(1):=1. See the Apostol reference, p. 48. exercise 17. (End)
a(prime(n)) = -A084920(n). - R. J. Mathar, Aug 28 2011
G.f.: Sum_{k>=1} mu(k)*k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017
a(n) = Sum_{d divides n} d * (sigma_1(d))^(-1) * sigma_1(n/d), where (sigma_1(n))^(-1) = A046692(n) denotes the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024
a(n) = A076479(n) * A322360(n). - Amiram Eldar, Feb 02 2024

Extensions

Corrected and extended by Vladeta Jovovic, Jul 25 2001
Additional comments from Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Jul 01 2005

A066086 Greatest common divisor of product (p-1) and product (p+1), where p ranges over distinct prime divisors of n; a(n) = gcd(A048250(n), A173557(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 6, 8, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 6, 2, 6, 2, 8, 2, 1, 4, 2, 24, 2, 2, 6, 8, 2, 2, 12, 2, 2, 8, 2, 2, 2, 2, 2, 8, 6, 2, 2, 8, 6, 4, 2, 2, 8, 2, 6, 4, 1, 12, 4, 2, 2, 4, 24, 2, 2, 2, 6, 8, 6, 12, 24, 2, 2, 2, 2, 2, 12, 4, 6, 8, 2, 2, 8, 8, 2, 4, 2, 24, 2, 2, 6, 4
Offset: 1

Views

Author

Labos Elemer, Dec 04 2001

Keywords

Comments

Frequently equal, but not identical, to A009223 (i.e. GCD of sigma and phi of n).

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Table[g2[w], {w, 1, 128}]
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, GCD[Times@@((#-1)& @@@ f), Times@@((#+1)& @@@ f)]]]; Array[a, 100] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    a(n)=my(f=factor(n)[,1]);gcd(prod(i=1,#f,f[i]+1),prod(i=1,#f,f[i]-1)) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = gcd(A048250(n), A023900(n)) = gcd(A000203(A007947(n)), A000010(A007947(n))).
a(n) = A322360(n) / A322359(n). - Antti Karttunen, Dec 04 2018

Extensions

Name edited, part of the old name transferred to the formula section by Antti Karttunen, Dec 04 2018

A351265 Sum of the squares of the squarefree divisors of n.

Original entry on oeis.org

1, 5, 10, 5, 26, 50, 50, 5, 10, 130, 122, 50, 170, 250, 260, 5, 290, 50, 362, 130, 500, 610, 530, 50, 26, 850, 10, 250, 842, 1300, 962, 5, 1220, 1450, 1300, 50, 1370, 1810, 1700, 130, 1682, 2500, 1850, 610, 260, 2650, 2210, 50, 50, 130, 2900, 850, 2810, 50, 3172, 250, 3620
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Inverse Möbius transform of n^2 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023

Examples

			a(6) = 50; a(6) = Sum_{d|6} d^2 * mu(d)^2 = 1^2*1 + 2^2*1 + 3^2*1 + 6^2*1 = 50.
		

Crossrefs

Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), this sequence (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^2); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
    Table[Total[Select[Divisors[n],SquareFreeQ]^2],{n,80}] (* Harvey P. Dale, Dec 26 2024 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquarefree(d), d^2)); \\ Michel Marcus, Feb 06 2022

Formula

a(n) = Sum_{d|n} d^2 * mu(d)^2.
a(n) = abs(A328639(n)).
G.f.: Sum_{k>=1} mu(k)^2 * k^2 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^2. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)/(3*zeta(2)) = A253905 / 3 = 0.243587... . - Amiram Eldar, Nov 10 2022
Dirichlet g.f.: zeta(s)*zeta(s-2)/zeta(2s-4). - Michael Shamos, Aug 05 2023

A372619 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = 1/(phi(k)) * Sum_{j=1..n} phi(k*j).

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 2, 5, 6, 1, 3, 5, 9, 10, 1, 2, 5, 7, 13, 12, 1, 3, 4, 9, 11, 17, 18, 1, 2, 6, 6, 13, 14, 23, 22, 1, 3, 4, 10, 11, 17, 20, 31, 28, 1, 2, 5, 6, 14, 13, 23, 24, 37, 32, 1, 3, 5, 9, 10, 20, 19, 31, 33, 45, 42, 1, 2, 5, 7, 13, 12, 26, 23, 37, 37, 55, 46
Offset: 1

Views

Author

Seiichi Manyama, May 07 2024

Keywords

Examples

			Square array T(n,k) begins:
   1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
   2,  3,  2,  3,  2,  3,  2,  3,  2,  3, ...
   4,  5,  5,  5,  4,  6,  4,  5,  5,  5, ...
   6,  9,  7,  9,  6, 10,  6,  9,  7,  9, ...
  10, 13, 11, 13, 11, 14, 10, 13, 11, 14, ...
  12, 17, 14, 17, 13, 20, 12, 17, 14, 18, ...
  18, 23, 20, 23, 19, 26, 19, 23, 20, 24, ...
		

Crossrefs

Main diagonal gives A070639.

Programs

  • Mathematica
    T[n_, k_] := Sum[EulerPhi[k*j], {j, 1, n}] / EulerPhi[k]; Table[T[k, n-k+1], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2024 *)
  • PARI
    T(n, k) = sum(j=1, n, eulerphi(k*j))/eulerphi(k);

Formula

T(n,k) ~ (3/Pi^2) * c(k) * n^2, where c(k) = A078615(k)/A322360(k) is the multiplicative function defined by c(p^e) = p^2/(p^2-1). - Amiram Eldar, May 09 2024

A322359 Least common multiple of product (p-1) and product (p+1), where p ranges over distinct prime divisors of n.

Original entry on oeis.org

1, 3, 4, 3, 12, 12, 24, 3, 4, 36, 60, 12, 84, 24, 24, 3, 144, 12, 180, 36, 96, 180, 264, 12, 12, 84, 4, 24, 420, 72, 480, 3, 240, 432, 48, 12, 684, 180, 168, 36, 840, 96, 924, 180, 24, 792, 1104, 12, 24, 36, 288, 84, 1404, 12, 360, 24, 720, 1260, 1740, 72, 1860, 480, 96, 3, 336, 720, 2244, 432, 1056, 144, 2520, 12
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, LCM[Times@@((#-1)& @@@ f), Times@@((#+1)& @@@ f)]]]; Array[a, 100] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A322359(n) = lcm(A048250(n), A173557(n));

Formula

a(n) = lcm(A048250(n), A173557(n)).
a(n) = A322360(n)/A066086(n).

A340323 Multiplicative with a(p^e) = (p + 1) * (p - 1)^(e - 1).

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 3, 8, 18, 12, 12, 14, 24, 24, 3, 18, 24, 20, 18, 32, 36, 24, 12, 24, 42, 16, 24, 30, 72, 32, 3, 48, 54, 48, 24, 38, 60, 56, 18, 42, 96, 44, 36, 48, 72, 48, 12, 48, 72, 72, 42, 54, 48, 72, 24, 80, 90, 60, 72, 62, 96, 64, 3, 84, 144, 68, 54
Offset: 1

Views

Author

Keywords

Comments

Starting with any integer and repeatedly applying the map x -> a(x) reaches the fixed point 12 or the loop {3, 4}.

Examples

			a(2^s) = 3 for all s>0.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local  t;
      mul((t[1]+1)*(t[1]-1)^(t[2]-1),t=ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 07 2021
  • Mathematica
    fa[n_]:=fa[n]=FactorInteger[n];
    phi[1]=1; phi[p_, s_]:= (p + 1)*( p - 1)^(s - 1)
    phi[n_]:=Product[phi[fa[n][[i, 1]], fa[n][[i, 2]]], {i,Length[fa[n]]}];
    Array[phi, 245]
  • PARI
    A340323(n) = if(1==n,n,my(f=factor(n)); prod(i=1,#f~,(f[i,1]+1)*((f[i,1]-1)^(f[i,2]-1)))); \\ Antti Karttunen, Jan 06 2021

Formula

a(n) = A167344(n) / A340368(n) = A048250(n) * A326297(n). - Antti Karttunen, Jan 06 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(6)/(2*zeta(2)*zeta(3))) * Product_{p prime} (1 + 2/p^2) = 0.56361239505... . - Amiram Eldar, Nov 12 2022
Showing 1-6 of 6 results.