cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A323399 Sum of Jordan function J_2(n), A007434 and its Dirichlet inverse, A046970.

Original entry on oeis.org

2, 0, 0, 9, 0, 48, 0, 45, 64, 144, 0, 120, 0, 288, 384, 189, 0, 240, 0, 360, 768, 720, 0, 408, 576, 1008, 640, 720, 0, 0, 0, 765, 1920, 1728, 2304, 888, 0, 2160, 2688, 1224, 0, 0, 0, 1800, 1920, 3168, 0, 1560, 2304, 1872, 4608, 2520, 0, 1968, 5760, 2448, 5760, 5040, 0, 1728, 0, 5760, 3840, 3069, 8064, 0, 0, 4320, 8448, 0, 0, 3480, 0, 8208, 4992, 5400
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Crossrefs

Programs

  • PARI
    A007434(n) = sumdiv(n, d, d*d*moebius(n/d));
    A046970(n) = if(1==n,n,my(f=factor(n)); for(i=1, #f~, f[i,1] = 1-(f[i,1]^2)); factorback(f[,1]));
    A323399(n) = (A007434(n) + A046970(n));

Formula

a(n) = A007434(n) + A046970(n).

A007434 Jordan function J_2(n) (a generalization of phi(n)).

Original entry on oeis.org

1, 3, 8, 12, 24, 24, 48, 48, 72, 72, 120, 96, 168, 144, 192, 192, 288, 216, 360, 288, 384, 360, 528, 384, 600, 504, 648, 576, 840, 576, 960, 768, 960, 864, 1152, 864, 1368, 1080, 1344, 1152, 1680, 1152, 1848, 1440, 1728, 1584, 2208, 1536
Offset: 1

Views

Author

Keywords

Comments

Number of points in the bicyclic group Z/mZ X Z/mZ whose order is exactly m. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Mar 14 2006
Number of irreducible fractions among {(u+v*i)/n : 1 <= u, v <= n} with i = sqrt(-1), where a fraction (u+v*i)/n is called irreducible if and only if gcd(u, v, n) = 1. - Reinhard Zumkeller, Aug 20 2005
The weight of the n-th polynomial for the analog of cyclotomic polynomials for elliptic divisibility sequences. That is, let the weight of b1 = 1, b2 = 3, b3 = 8, b4 = 12 and let e1 = b1, e2 = b2*b1, e3 = b3*b1, e4 = b2*b4*b1, e5 = (b2^4*b4 - b3^3)*b1 = b5*e1, and so on, be an elliptic divisibility sequence. Then weight of e2 = 4, e3 = 9, e4 = 16, e5 = 25, where weight of en is n^2 in general, while weight of bn is a(n). - Michael Somos, Aug 12 2008
J_2(n) divides J_{2k}(n). J_2(n) gives the number of 2-tuples (x1,x2), such that 1 <= x1, x2 <= n and gcd(x1, x2, n) = 1. - Enrique Pérez Herrero, Mar 05 2011
From Jianing Song, Apr 06 2019: (Start)
Let k be any quadratic field such that all prime factors of n are inert in k, O_k be the corresponding ring of integers and G(n) = (O_k/nO_k)* be the multiplicative group of integers in O_k modulo n, then a(n) is the number of elements in G(n). The exponent of G(n) is A306933(n). [Equivalently, G(p^e) can be defined as (Z_{p^2}/p^eZ_{p^2})*, where Z_{p^2} is the ring of integers of the field Q_{p^2} (with a unique maximal ideal pZ_{p^2}), and Q_{p^2} is the unique unramified quadratic extension of the p-adic field Q_p. For the group structure of G(p^e), see A306933. - Jianing Song, Jun 19 2025]
For n >= 5, a(n) is divisible by 24. (End)
The Del Centina article on page 106 mentions a formula by Halphen denoted by phi(n)T(n). - Michael Somos, Feb 05 2021

Examples

			a(4) = 12 because the divisors of 4 being 1, 2, 4, we find that phi(1)*phi(4/1)*(4/1) = 8, phi(2)*phi(4/2)*(4/2) = 2, phi(4)*phi(4/4)*(4/4) = 2 and 8 + 2 + 2 = 12.
G.f. = x + 3*x^2 + 8*x^3 + 12*x^4 + 24*x^5 + 24*x^6 + 48*x^7 + 48*x^8 + 72*x^9 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • A. Del Centina, Poncelet's porism: a long story of renewed discoveries, I, Hist. Exact Sci. (2016), v. 70, p. 106.
  • L. E. Dickson (1919, repr. 1971). History of the Theory of Numbers I. Chelsea. p. 147.
  • P. J. McCarthy, Introduction to Arithmetical Functions, Universitext, Springer, New York, NY, USA, 1986.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Section 6, Problem 64.
  • M. Ram Murty (2001). Problems in Analytic Number Theory. Graduate Texts in Mathematics. 206. Springer-Verlag. p. 11.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)).
Cf. A000010 (J_1), this sequence (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Cf. A002117, A088453, A301875, A301876, A321879 (partial sums).

Programs

  • Haskell
    a007434 n = sum $ zipWith3 (\x y z -> x * y * z)
                      tdivs (reverse tdivs) (reverse divs)
                      where divs = a027750_row n;  tdivs = map a000010 divs
    -- Reinhard Zumkeller, Nov 24 2012
    
  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 2)
    A007434 := proc(n)
        add(d^2*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, Nov 03 2015
  • Mathematica
    jordanTotient[n_, k_:1] := DivisorSum[n, #^k*MoebiusMu[n/#] &] /; (n > 0) && IntegerQ[n]; Table[jordanTotient[n, 2], {n, 48}] (* Enrique Pérez Herrero, Sep 14 2010 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^2 MoebiusMu[ n/d], {d, Divisors @ n}]]; (* Michael Somos, Jan 11 2014 *)
    a[ n_] := If[ n < 2, Boole[ n == 1], n^2 (Times @@ ((1 - 1/#[[1]]^2) & /@ FactorInteger @ n))]; (* Michael Somos, Jan 11 2014 *)
    jordanTotient[n_Integer?Positive, r_:1] := DirichletConvolve[MoebiusMu[K], K^r, K, n]; Table[jordanTotient[n, 2], {n, 48}] (* Jan Mangaldan, Jun 03 2016 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 20 2004 */
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 - X) / (1 - X*p^2))[n])}; /* Michael Somos, Jan 11 2014 */
    
  • PARI
    seq(n) = dirmul(vector(n,k,k^2), vector(n,k,moebius(k)));
    seq(48)  \\ Gheorghe Coserea, May 11 2016
    
  • PARI
    jordan(n,k)=my(a=n^k);fordiv(n,i,if(isprime(i),a*=(1-1/(i^k))));a  \\ Roderick MacPhee, May 05 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A007434(n): return prod(p**(e-1<<1)*(p**2-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024

Formula

Moebius transform of squares.
Multiplicative with a(p^e) = p^(2e) - p^(2e-2). - Vladeta Jovovic, Jul 26 2001
a(n) = Sum_{d|n} d^2 * mu(n/d). - Benoit Cloitre, Apr 05 2002
a(n) = n^2 * Product_{p|n} (1-1/p^2). - Tom Edgar, Jan 07 2015
a(n) = Sum_{d|n} phi(d)*phi(n/d)*n/d; Sum_{d|n} a(d) = n^2. - Reinhard Zumkeller, Aug 20 2005
Dirichlet generating function: zeta(s-2)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
Dirichlet inverse of A046970. - Michael Somos, Jan 11 2014
a(n) = a(n^2)/n^2. - Enrique Pérez Herrero, Sep 14 2010
a(n) = A000010(n) * A001615(n).
If n > 1, then 1 > a(n)/n^2 > 1/zeta(2). - Enrique Pérez Herrero, Jul 14 2011
a(n) = Sum_{d|n} phi(n^2/d)*mu(d)^2. - Enrique Pérez Herrero, Jul 24 2012
a(n) = Sum_{k = 1..n} gcd(k, n)^2 * cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013
a(1) + a(2) + ... + a(n) ~ 1/(3*zeta(3))*n^3 + O(n^2). Lambert series Sum_{n >= 1} a(n)*x^n/(1 - x^n) = x*(1 + x)/(1 - x)^3. - Peter Bala, Dec 23 2013
n * a(n) = A000056(n). - Michael Somos, Mar 20 2004
a(n) = 24 * A115000(n) unless n < 5. - Michael Somos, Aug 12 2008
a(n) = A001065(n) - A134675(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
a(n) = Sum_{k=1..n} gcd(n, k) * phi(gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 15 2018
G.f.: Sum_{k>=1} mu(k)*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, Oct 24 2018
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2/(p^2 - 1)^2) = 1.81078147612156295224312590448625180897250361794500723589001447178002894356... - Vaclav Kotesovec, Sep 19 2020
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^2 = 1/zeta(3) (A088453). - Amiram Eldar, Oct 12 2020
From Richard L. Ollerton, May 09 2021: (Start)
a(n) = Sum_{k=1..n} (n/gcd(n,k))^2*mu(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} gcd(n,k)^2*mu(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} n*phi(gcd(n,k))/gcd(n,k).
a(n) = Sum_{k=1..n} phi(n*gcd(n,k))*mu(n/gcd(n,k))^2.
a(n) = Sum_{k=1..n} phi(n^2/gcd(n,k))*mu(gcd(n,k))^2*phi(gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = Sum_{k = 1..n} phi(gcd(n, k)^2) = Sum_{d divides n} phi(d^2)*phi(n/d). - Peter Bala, Jan 17 2024
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i)*phi(j). See Tóth, p. 14. - Peter Bala, Jan 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(2*(k + 1)))/A001157(n^k). - Velin Yanev, Dec 04 2024

Extensions

Thanks to Michael Somos for catching an error in this sequence.

A000056 Order of the group SL(2,Z_n).

Original entry on oeis.org

1, 6, 24, 48, 120, 144, 336, 384, 648, 720, 1320, 1152, 2184, 2016, 2880, 3072, 4896, 3888, 6840, 5760, 8064, 7920, 12144, 9216, 15000, 13104, 17496, 16128, 24360, 17280, 29760, 24576, 31680, 29376, 40320, 31104, 50616, 41040, 52416, 46080, 68880, 48384, 79464
Offset: 1

Views

Author

Keywords

Comments

The number of equivalence classes of matrices modulo n of integer matrices with determinant 1 modulo n. - Michael Somos, Mar 20 2004
24 | a(n) if n > 2. - Michael Somos, Nov 15 2011
A divisibility sequence, that is, a(n) divides a(n*m) for all positive integers n and m. - Michael Somos, Jan 01 2017
The group SL(2,Z_2) is isomorphic to the symmetric group S_3. - Bernard Schott, Mar 15 2020
a(n) = [SL_2(Z) : Gamma(n)], index of the principal congruence subgroup of the special linear group over integers. - Andrey Zabolotskiy, Feb 14 2025

Examples

			G.f. = x + 6*x^2 + 24*x^3 + 48*x^4 + 120*x^5 + 144*x^6 + 336*x^7 +384*x^8 + ...
a(2) = 6 because [0, 1; 1, 0], [0, 1; 1, 1], [1, 0; 0, 1], [1, 0; 1, 1], [1, 1; 0, 1], [1, 1; 1, 0] are the six matrices modulo 2 with determinant 1 modulo 2.
		

References

  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 46.
  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 75.

Crossrefs

Cf. A001766.
Row n=2 of A316623.
Row sums of A316564.
Cf. A000252 (GL(2,Z_n)), A064767 (GL(3,Z_n)), A305186 (GL(4,Z_n)).
Cf. A011785 (SL(3,Z_n)), A011786 (SL(4,Z_n)).
Cf. A007434 ([SL_2(Z) : Gamma_1(n)]), A001615 ([SL_2(Z) : Gamma_0(n)]).

Programs

  • Maple
    proc(n) local b,d: b := n^3: for d from 1 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1-d^(-2)): fi: od: RETURN(b): end:
  • Mathematica
    (* From Olivier Gérard, Aug 15 1997: (Start) *)
    Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1-1/#2^2), #1 ]&, n^3, Range[ n ] ], {n, 1, 35} ]
    Table[ n^3 Times@@(1-1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]^2), {n, 1, 35} ]  (* End *)
    a[ n_] := If[ n<1, 0, n Sum[ d^2 MoebiusMu[ n/d ], {d, Divisors @ n}]]; (* Michael Somos, Nov 15 2011 *)
    Table[ n DirichletConvolve[ MoebiusMu[m], m^2, m, n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
    a[n_] := #.RotateLeft[#] & @ Sort[Mod[ Outer[Times, Range[n], Range[n]], n] // Flatten // Tally][[;; , 2]]
    Table[a[n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 05 2008 */
    
  • Python
    from math import prod
    from sympy import factorint
    def A000056(n): return prod((p+1)*(p-1)*p**(3*e-2) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

Multiplicative with a(p^e) = (p^2 - 1)*p^(3e-2). - David W. Wilson, Aug 01 2001
a(n) = A000252(n)/phi(n), where phi is Euler totient function (cf. A000010). - Vladeta Jovovic, Oct 30 2001
a(n) = n*Sum_{d|n} d^2*mu(n/d) = n*A007434(n) where A007434 is the Jordan function J_2(n). - Benoit Cloitre, May 03 2003
a(n) = A007434(n^2)/n. - Enrique Pérez Herrero, Sep 14 2010
a(n) = A007434(n^3)/n^3. - Enrique Pérez Herrero, Dec 19 2010
Dirichlet g.f. zeta(s-3)/zeta(s-1). - R. J. Mathar, Feb 27 2011
A046970(n) divides a(n). - R. J. Mathar, Mar 30 2011
Sum_{k=1..n} a(k) ~ n^4 / (4*Zeta(3)). - Vaclav Kotesovec, Jan 30 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2 / ((p-1)^2 * (p+1) * (p^2 + p + 1))) = 1.258448350408311046314826069717731136828991478925039589864338603650639811... - Vaclav Kotesovec, Sep 19 2020

Extensions

More terms from Vaclav Kotesovec, Sep 19 2020

A181318 a(n) = A060819(n)^2.

Original entry on oeis.org

0, 1, 1, 9, 1, 25, 9, 49, 4, 81, 25, 121, 9, 169, 49, 225, 16, 289, 81, 361, 25, 441, 121, 529, 36, 625, 169, 729, 49, 841, 225, 961, 64, 1089, 289, 1225, 81, 1369, 361, 1521, 100, 1681, 441, 1849, 121, 2025, 529, 2209, 144, 2401, 625, 2601, 169, 2809, 729
Offset: 0

Views

Author

Paul Curtz, Jan 26 2011

Keywords

Comments

The first sequence, p=0, of the family A060819(n)*A060819(n+p).
Hence array
p=0: 0, 1, 1, 9, 1, 25, 9, 49, a(n)=A060819(n)^2,
p=1: 0, 1, 3, 3, 5, 15, 21, 14, A064038(n),
p=2: 0, 3, 1, 15, 3, 35, 6, 63, A198148(n),
p=3: 0, 1, 5, 9, 7, 10, 27, 35, A160050(n),
p=4: 0, 5, 3, 21, 2, 45, 15, 77, A061037(n),
p=5: 0, 3, 7, 6, 9, 25, 33, 21, A178242(n),
p=6: 0, 7, 2, 27, 5, 55, 9, 91, A217366(n),
p=7: 0, 2, 9, 15, 11, 15, 39, 49, A217367(n),
p=8: 0, 9, 5, 33, 3, 65, 21, 105, A180082(n).
Compare columns 2, 3 and 5, columns 4 and 7 and columns 6 and 8.
From Peter Bala, Feb 19 2019: (Start)
We make some general remarks about the sequence a(n) = numerator(n^2/(n^2 + k^2)) = (n/gcd(n,k))^2 for k a fixed positive integer (we suppress the dependence of a(n) on k). The present sequence corresponds to the case k = 4.
a(n) is a quasi-polynomial in n. In fact, a(n) = n^2/b(n) where b(n) = gcd(n^2,k^2) is a purely periodic sequence in n.
In addition to being multiplicative these sequences are also strong divisibility sequences, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, it follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m).
By the multiplicativeness and strong divisibility property of the sequence a(n) it follows that if gcd(n,m) = 1 then a( a(n)*a(m) ) = a(a(n)) * a(a(m)), a( a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
The sequence a(n) has the rational generating function Sum_{d divides k} f(d)*F(x^d), where F(x) = x*(1 + x)/(1 - x)^3 = x + 4*x^2 + 9*x^3 + 16*x^4 + ... is the o.g.f. for the squares A000290, and where f(n) is the Dirichlet inverse of the Jordan totient function J_2(n) - see A007434. The function f(n) is multiplicative and is defined on prime powers p^k by f(p^k) = (1 - p^2). See A046970. Cf. A060819. (End)
a(n-4) is the constant needed to complete the n-polygonal numbers into squares (see A377851); a(-1) = 1, which completes the triangle numbers, is not shown in the data. - Jonathan Dushoff, Nov 12 2024

Crossrefs

Programs

  • Magma
    [n^2/GCD(n,4)^2: n in [0..100]]; // G. C. Greubel, Sep 19 2018
    
  • Maple
    a:=n->n^2/gcd(n,4)^2: seq(a(n),n=0..60); # Muniru A Asiru, Feb 20 2019
  • Mathematica
    Table[n^2/GCD[n,4]^2, {n,0,100}] (* G. C. Greubel, Sep 19 2018 *)
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{0,1,1,9,1,25,9,49,4,81,25,121},60] (* Harvey P. Dale, Jan 18 2025 *)
  • PARI
    a(n)=n^2/gcd(n,4)^2 \\ Charles R Greathouse IV, Dec 21 2011
    
  • Sage
    [n^2/gcd(n, 4)^2 for n in (0..100)] # G. C. Greubel, Feb 20 2019

Formula

a(2*n) = A168077(n), a(2*n+1) = A016754(n).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
G.f.: x*(1 + x + 9*x^2 + x^3 + 22*x^4 + 6*x^5 + 22*x^6 + x^7 + 9*x^8 + x^9 + x^10)/(1-x^4)^3. - R. J. Mathar, Mar 10 2011
From Peter Bala, Feb 19 2019: (Start)
a(n) = numerator(n^2/(n^2 + 16)) = n^2/(gcd(n^2,16)) = (n/gcd(n,4))^2.
a(n) = n^2/b(n), where b(n) = [1, 4, 1, 16, 1, 4, 1, 16, ...] is a purely periodic sequence of period 4.
a(n) is a quasi-polynomial in n: a(4*n) = n^2; a(4*n + 1) = (4*n + 1)^2; a(4*n + 2) = (2*n + 1)^2; a(4*n + 3) = (4*n + 3)^2.
O.g.f.: Sum_{d divides 4} A046970(d)*x^d*(1 + x^d)/(1 - x^d)^3 = x*(1 + x)/(1 - x)^3 - 3*x^2*(1 + x^2)/(1 - x^2)^3 - 3*x^4*(1 + x^4)/(1 - x^4)^3. (End)
Sum_{n>=1} 1/a(n) = 5*Pi^2/12. - Amiram Eldar, Aug 12 2022
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 4^max(0, e-2), and a(p^e) = p^(2*e) for p > 2.
Dirichlet g.f.: zeta(s-2)*(1 - 3/2^s - 3/4^s).
Sum_{k=1..n} a(k) ~ (37/192) * n^3. (End)
a(n) = (37 - 27*(-1)^n - 3*(-1)^(n*(n-1)/2) - 3*(-1)^(n*(n+1)/2)) * n^2/64. - Vaclav Kotesovec, Nov 14 2024

Extensions

Edited by Jean-François Alcover, Oct 01 2012 and Jan 15 2013
More terms from Michel Marcus, Jun 09 2014

A063453 Multiplicative with a(p^e) = 1 - p^3.

Original entry on oeis.org

1, -7, -26, -7, -124, 182, -342, -7, -26, 868, -1330, 182, -2196, 2394, 3224, -7, -4912, 182, -6858, 868, 8892, 9310, -12166, 182, -124, 15372, -26, 2394, -24388, -22568, -29790, -7, 34580, 34384, 42408, 182, -50652, 48006, 57096, 868, -68920, -62244, -79506, 9310, 3224, 85162, -103822, 182
Offset: 1

Views

Author

Vladeta Jovovic, Jul 26 2001

Keywords

Comments

More generally, Dirichlet g.f. for Sum_{d|n} mu(d)*d^k, the Dirichlet inverse of the Jordan function J_k, is zeta(s)/zeta(s-k).
Apart from different signs also Sum_{d|n} core(d)^3*mu(n/d) where core(x) is the squarefree part of x. - Benoit Cloitre, May 31 2002
Dirichlet inverse of A059376. - R. J. Mathar, Jul 15 2010

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1986.

Crossrefs

Dirichlet inverse of Jordan totient function J_r(n): A023900 (r = 1), A046970(r = 2), A189922 (r = 4).
Cf. A027748.

Programs

  • Haskell
    a063453 = product . map ((1 -) . (^ 3)) . a027748_row
    -- Reinhard Zumkeller, Jan 19 2012
    
  • Maple
    Jinvk := proc(n,k) local a,f,p ; a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; a := a*(1-p^k) ; end do: a ; end proc:
    A063453 := proc(n) Jinvk(n,3) ; end proc: # R. J. Mathar, Jul 04 2011
    # second Maple program:
    a:= n-> mul(1-i[1]^3, i=ifactors(n)[2]):
    seq(a(n), n=1..48);  # Alois P. Heinz, Jan 26 2024
  • Mathematica
    a[n_] := Total[MoebiusMu[#]*#^3& /@ Divisors[n]]; Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Jul 26 2011 *)
    f[p_, e_] := (1-p^3); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 08 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d) * d^3); \\ Indranil Ghosh, Mar 11 2017
    
  • Python
    from math import prod
    from sympy import primefactors
    def A063453(n): return prod(1-p**3 for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023

Formula

a(n) = Sum_{d|n} mu(d)*d^3.
Dirichlet g.f.: zeta(s)/zeta(s-3).
A023900(n) | a(n). - R. J. Mathar, Mar 30 2011
a(n)= product_{p|n}(1-p^3), n>=2, p prime, a(1)=1. a(n)= J_{-3}(n)*n^3, with the Jordan function J_k(n). See the Apostol reference, p. 48, exercise 17. - Wolfdieter Lang, Jun 16 2011.
G.f.: Sum_{k>=1} mu(k)*k^3*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017
a(n) = Sum_{d divides n} d * sigma_2(d)^(-1) * sigma_1(n/d), where sigma_2(n)^(-1) = A053822(n) denotes the Dirichlet inverse of sigma_2(n). - Peter Bala, Jan 26 2024

A334657 Dirichlet g.f.: 1 / zeta(s-2).

Original entry on oeis.org

1, -4, -9, 0, -25, 36, -49, 0, 0, 100, -121, 0, -169, 196, 225, 0, -289, 0, -361, 0, 441, 484, -529, 0, 0, 676, 0, 0, -841, -900, -961, 0, 1089, 1156, 1225, 0, -1369, 1444, 1521, 0, -1681, -1764, -1849, 0, 0, 2116, -2209, 0, 0, 0, 2601, 0, -2809, 0, 3025, 0, 3249, 3364, -3481, 0, -3721
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2020

Keywords

Comments

Dirichlet inverse of A000290.
Moebius transform of A046970.
Inverse Moebius transform of A053822.

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n] n^2, {n, 61}]

Formula

G.f. A(x) satisfies: A(x) = x - 2^2 * A(x^2) - 3^2 * A(x^3) - 4^2 * A(x^4) - ...
a(1) = 1; a(n) = -n^2 * Sum_{d|n, d < n} a(d) / d^2.
a(n) = mu(n) * n^2.
Multiplicative with a(p^e) = -p^2 if e = 1 and 0 otherwise. - Amiram Eldar, Oct 25 2020

A011785 Number of 3 X 3 matrices whose determinant is 1 mod n.

Original entry on oeis.org

1, 168, 5616, 43008, 372000, 943488, 5630688, 11010048, 36846576, 62496000, 212427600, 241532928, 810534816, 945955584, 2089152000, 2818572288, 6950204928, 6190224768, 16934047920, 15998976000, 31621943808, 35687836800
Offset: 1

Views

Author

Benjamin T. Love (benlove(AT)preston.polaristel.net)

Keywords

Comments

Order of the group SL(3,Z_n). For n > 2, a(n) is divisible by 48. - Jianing Song, Nov 24 2018

Crossrefs

Cf. A000056 (SL(2,Z_n)), A011786 (SL(4,Z_n)).
Cf. A000252 (GL(2,Z_n)), A064767 (GL(3,Z_n)), A305186 (GL(4,Z_n)).

Programs

  • Mathematica
    a[n_] := (n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]])/EulerPhi[n]; a[1] = 1; Array[a, 30] (* Jean-François Alcover, Mar 21 2017 *)
  • PARI
    a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k)))/eulerphi(n); \\ Michel Marcus, Jun 30 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A011785(n): return prod(p**((e<<3)-5)*(p**2*(p*(p-1)*(p+1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

Multiplicative with a(p^e) = p^(8*e-5)*(p^3 - 1)*(p^2 - 1). - Vladeta Jovovic, Nov 18 2001
For a formula see A064767.
a(n) = A046970(n)*A063453(n)*A000578(n)*A003557(n)^5. - R. J. Mathar, Mar 30 2011
a(n) = A064767(n)/phi(n). - Jianing Song, Nov 24 2018
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^5/((p-1)^3 * (p+1)^2 * (p^2 + p + 1) * (p^6 + p^4 + p^2 + 1))) = 1.0061577672748872278355775942508642214184417621389767880397578015151659965... - Vaclav Kotesovec, Sep 19 2020
Sum_{k=1..n} a(k) ~ c * n^9, where c = (1/9) * Product_{p prime} (1 - (p^3 + p^2 -1)/p^6) = 0.08630488937... . - Amiram Eldar, Oct 23 2022

Extensions

More terms from John W. Layman, Feb 16 2001
Further terms from Vladeta Jovovic, Oct 29 2001

A189922 Jordan function J_{-4} multiplied by n^4.

Original entry on oeis.org

1, -15, -80, -15, -624, 1200, -2400, -15, -80, 9360, -14640, 1200, -28560, 36000, 49920, -15, -83520, 1200, -130320, 9360, 192000, 219600, -279840, 1200, -624, 428400, -80, 36000, -707280, -748800, -923520, -15, 1171200, 1252800, 1497600, 1200, -1874160
Offset: 1

Views

Author

Wolfdieter Lang, Jun 16 2011

Keywords

Comments

For the Jordan function J_k see the Comtet and Apostol references.

Examples

			a(2) = a(4) = a(8) = ... = 1 - 2^4 = -15.
a(4) = mu(1)*1^4 + mu(2)*2^4 + mu(4)*4^4 = 1 - 16 + 0 = -15.
Sum identity for n=4: a(1)*(4/1)^4 + a(2)*(4/2)^4 + a(4)*(4/4)^4 = 256 - 15*16 - 15 = 1.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1986.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A023900 (k=-1), A046970 (k=-2), A063453 (k=-3).

Programs

  • Maple
    a:= n-> mul(1-i[1]^4, i=ifactors(n)[2]):
    seq(a(n), n=1..48);  # Alois P. Heinz, Jan 26 2024
  • Mathematica
    a[n_] := Sum[ MoebiusMu[d]*d^4, {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Sep 03 2012 *)
    f[p_, e_] := (1-p^4); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 08 2020 *)
  • PARI
    for (n=1, 30, print1(sumdiv(n, d, moebius(d) * d^4),", ")); \\ Indranil Ghosh, Mar 11 2017

Formula

a(n) = J_{-4}(n)*n^4 = Product_{p prime | n} (1 - p^4), for n>=2, a(1)=1.
a(n) = Sum_{d|n} mu(d)*d^4 with the Moebius function mu = A008683.
Dirichlet g.f.: zeta(s)/zeta(s-4).
Sum identity: Sum_{d|n} a(n)*(n/d)^4 = 1 for all n>=1.
a(n) = a(rad(n)) with rad(n) = A007947(n), the squarefree kernel of n.
G.f.: Sum_{k>=1} mu(k)*k^4*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017
a(n) = Sum_{d divides n} d * sigma_3(d)^(-1) * sigma_1(n/d), where sigma_3(n)^(-1) = A053825(n) denotes the Dirichlet inverse of sigma_3(n). - Peter Bala, Jan 26 2024

A321222 a(n) = Sum_{d|n} mu(d)*d^n.

Original entry on oeis.org

1, -3, -26, -15, -3124, 45864, -823542, -255, -19682, 9990233352, -285311670610, 2176246800, -302875106592252, 11111328602468784, 437893859848932344, -65535, -827240261886336764176, 101559568985784, -1978419655660313589123978, 99999904632567310800
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[d] d^n, {d, Divisors[n]}], {n, 20}]
    nmax = 20; Rest[CoefficientList[Series[Sum[MoebiusMu[k] (k x)^k/(1 - (k x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Product[1 - Boole[PrimeQ[d]] d^n, {d, Divisors[n]}], {n, 20}]
  • PARI
    a(n) = sumdiv(n, d, moebius(d)*d^n) \\ Andrew Howroyd, Nov 06 2018

Formula

G.f.: Sum_{k>=1} mu(k)*(k*x)^k/(1 - (k*x)^k).
a(n) = Product_{p|n, p prime} (1 - p^n).

A322360 Multiplicative with a(p^e) = p^2 - 1.

Original entry on oeis.org

1, 3, 8, 3, 24, 24, 48, 3, 8, 72, 120, 24, 168, 144, 192, 3, 288, 24, 360, 72, 384, 360, 528, 24, 24, 504, 8, 144, 840, 576, 960, 3, 960, 864, 1152, 24, 1368, 1080, 1344, 72, 1680, 1152, 1848, 360, 192, 1584, 2208, 24, 48, 72, 2304, 504, 2808, 24, 2880, 144, 2880, 2520, 3480, 576, 3720, 2880, 384, 3, 4032, 2880
Offset: 1

Views

Author

Antti Karttunen, Dec 04 2018

Keywords

Comments

Absolute values of A046970, the Dirichlet inverse of the Jordan function J_2 (A007434).
Absolute values of the Möbius transform of A055491. (See Benoit Cloitre's May 31 2002 comment in A046970).

Crossrefs

Absolute values of A046970.

Programs

  • Maple
    a:= n-> mul(i[1]^2-1, i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Jan 05 2021
  • Mathematica
    a[n_] := If[n==1, 1, Times @@ ((#^2-1)& @@@ FactorInteger[n])]; Array[a, 50]  (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A322360(n) = factorback(apply(p -> (p*p)-1, factor(n)[, 1]));
    
  • PARI
    A322360(n) = abs(sumdiv(n,d,moebius(n/d)*(core(d)^2)));

Formula

Multiplicative with a(p^e) = p^2 - 1.
a(n) = Product_{p prime divides n} (p^2 - 1).
a(n) = abs(A046970(n)).
a(n) = A048250(n) * A173557(n) = A066086(n) * A322359(n).
G.f. for a signed version of the sequence: Sum_{n >= 1} mu(n)*n^2*x^n/(1 - x^n) = Sum_{n >= 1} (-1)^omega(n)*a(n)*x^n = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + 72*x^10 - ..., where mu(n) is the Möbius function A008683(n) and omega(n) = A001221(n) is the number of distinct primes dividing n. - Peter Bala, Mar 05 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (p-1)*(p^2 + 2*p + 2)/(p*(p^2 + p + 1)) = 0.187556464... . - Amiram Eldar, Oct 22 2022
a(n) = A007434(A007947(n)). - Enrique Pérez Herrero, Oct 14 2024
Showing 1-10 of 18 results. Next