cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A055615 a(n) = n * mu(n), where mu is the Möbius function A008683.

Original entry on oeis.org

1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, -13, 14, 15, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -30, -31, 0, 33, 34, 35, 0, -37, 38, 39, 0, -41, -42, -43, 0, 0, 46, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 58, -59, 0, -61, 62, 0, 0, 65, -66, -67, 0, 69, -70, -71, 0
Offset: 1

Views

Author

Michael Somos, Jun 04 2000

Keywords

Comments

Dirichlet inverse of n (A000027).
Absolute values give n if n is squarefree, otherwise 0.
a(n) is multiplicative because both mu(n) and n are. - Mitch Harris, Jun 09 2005
a(n) is multiplicative with a(p^1) = -p, a(p^e) = 0 if e > 1. - David W. Wilson, Jun 12 2005
Negative of the Moebius number of the dihedral group of order 2n. - Eric M. Schmidt, Jul 28 2013

Examples

			G.f. = x - 2*x^2 - 3*x^3 - 5*x^5 + 6*x^6 - 7*x^7 + 10*x^10 - 11*x^11 - 13*x^13 + ...
		

Crossrefs

Moebius transform of A023900.
Cf. A000027 (Dirichlet inverse), A061669 (sum with it).
Cf. A062004.
Cf. A013929 (positions of 0's), A068340 (partial sums), A261869 (first differences), A261890 (second differences).

Programs

  • Haskell
    a055615 n = a008683 n * n  -- Reinhard Zumkeller, Sep 04 2015
    
  • Magma
    [n*MoebiusMu(n): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    with(numtheory): A055615:=n->n*mobius(n): seq(A055615(n), n=1..100); # Wesley Ivan Hurt, Nov 18 2014
  • Mathematica
    Table[n MoebiusMu[n], {n,80}] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    {a(n) = if( n<1, 0, n * moebius(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 - p*X)[n])};
    
  • Python
    from sympy import mobius
    def A055615(n): return n*mobius(n) # Chai Wah Wu, Apr 01 2023
  • SageMath
    [n*moebius(n) for n in (1..100)] # G. C. Greubel, May 24 2022
    

Formula

a(n) = n * A008683(n).
Dirichlet g.f.: 1/zeta(s-1).
Multiplicative with a(p^e) = -p*0^(e-1), e>0 and p prime. - Reinhard Zumkeller, Jul 17 2003
Conjectures: lim b->1+ Sum n=1..inf a(n)*b^(-n) = -12 and lim b->1- Sum n=1..inf a(n)*b^n = -12 (+ indicates that b decreases to 1, - indicates it increases to 1), both considering that zeta(-1) = -1/12 and calculations (more generally mu(n)*n^s is Abel summable to zeta(-s)). - Gerald McGarvey, Sep 26 2004
Dirichlet generating function for the absolute value: zeta(s-1)/zeta(2s-2). - Franklin T. Adams-Watters, Sep 11 2005
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} k*A(x^k). - Ilya Gutkovskiy, May 11 2019
Sum_{k=1..n} abs(a(k)) ~ 3*n^2/Pi^2. - Amiram Eldar, Feb 02 2024

A336276 a(n) = Sum_{k=1..n} mu(k)*k^2.

Original entry on oeis.org

1, -3, -12, -12, -37, -1, -50, -50, -50, 50, -71, -71, -240, -44, 181, 181, -108, -108, -469, -469, -28, 456, -73, -73, -73, 603, 603, 603, -238, -1138, -2099, -2099, -1010, 146, 1371, 1371, 2, 1446, 2967, 2967, 1286, -478, -2327, -2327, -2327, -211, -2420
Offset: 1

Views

Author

Donald S. McDonald, Jul 15 2020

Keywords

Comments

Conjecture: a(n) changes sign infinitely often.

Crossrefs

Programs

  • Mathematica
    Array[Sum[MoebiusMu[k]*k^2, {k, #}] &, 47] (* Michael De Vlieger, Jul 15 2020 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*k^2); \\ Michel Marcus, Jul 15 2020
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A336276(n):
        if n <= 1:
            return 1
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c -= (j2*(j2-1)*((j2<<1)-1)-j*(j-1)*((j<<1)-1))//6*A336276(k1)
            j, k1 = j2, n//j2
        return c-(n*(n+1)*((n<<1)+1)-j*(j-1)*((j<<1)-1))//6 # Chai Wah Wu, Apr 04 2023

Formula

Partial sums of A334657.
G.f. A(x) satisfies x = Sum_{k>=1} k^2 * (1 - x^k) * A(x^k). - Seiichi Manyama, Apr 01 2023
Sum_{k=1..n} k^2 * a(floor(n/k)) = 1. - Seiichi Manyama, Apr 03 2023

A334659 Dirichlet g.f.: 1 / zeta(s-3).

Original entry on oeis.org

1, -8, -27, 0, -125, 216, -343, 0, 0, 1000, -1331, 0, -2197, 2744, 3375, 0, -4913, 0, -6859, 0, 9261, 10648, -12167, 0, 0, 17576, 0, 0, -24389, -27000, -29791, 0, 35937, 39304, 42875, 0, -50653, 54872, 59319, 0, -68921, -74088, -79507, 0, 0, 97336, -103823, 0, 0, 0, 132651, 0, -148877
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2020

Keywords

Comments

Dirichlet inverse of A000578.
Moebius transform of A063453.
Inverse Moebius transform of A053825.

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n] n^3, {n, 53}]

Formula

G.f. A(x) satisfies: A(x) = x - 2^3 * A(x^2) - 3^3 * A(x^3) - 4^3 * A(x^4) - ...
a(1) = 1; a(n) = -n^3 * Sum_{d|n, d < n} a(d) / d^3.
a(n) = mu(n) * n^3.
Multiplicative with a(p^e) = -p^3 if e = 1 and 0 otherwise. - Amiram Eldar, Dec 05 2022

A334660 Dirichlet g.f.: 1 / zeta(s-4).

Original entry on oeis.org

1, -16, -81, 0, -625, 1296, -2401, 0, 0, 10000, -14641, 0, -28561, 38416, 50625, 0, -83521, 0, -130321, 0, 194481, 234256, -279841, 0, 0, 456976, 0, 0, -707281, -810000, -923521, 0, 1185921, 1336336, 1500625, 0, -1874161, 2085136, 2313441, 0, -2825761, -3111696, -3418801, 0, 0, 4477456
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2020

Keywords

Comments

Dirichlet inverse of A000583.
Moebius transform of A189922.
Inverse Moebius transform of A053826.

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n] n^4, {n, 46}]

Formula

G.f. A(x) satisfies: A(x) = x - 2^4 * A(x^2) - 3^4 * A(x^3) - 4^4 * A(x^4) - ...
a(1) = 1; a(n) = -n^4 * Sum_{d|n, d < n} a(d) / d^4.
a(n) = mu(n) * n^4.
Multiplicative with a(p^e) = -p^4 if e = 1 and 0 otherwise. - Amiram Eldar, Dec 05 2022

A359485 a(1) = 1, a(2) = -5; a(n) = -n^2 * Sum_{d|n, d < n} a(d) / d^2.

Original entry on oeis.org

1, -5, -9, 4, -25, 45, -49, 0, 0, 125, -121, -36, -169, 245, 225, 0, -289, 0, -361, -100, 441, 605, -529, 0, 0, 845, 0, -196, -841, -1125, -961, 0, 1089, 1445, 1225, 0, -1369, 1805, 1521, 0, -1681, -2205, -1849, -484, 0, 2645, -2209, 0, 0, 0, 2601, -676, -2809, 0, 3025, 0, 3249, 4205, -3481, 900, -3721, 4805, 0
Offset: 1

Views

Author

Seiichi Manyama, Apr 01 2023

Keywords

Crossrefs

Partial sums give A360390.
Cf. A334657.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, -p^2, 0]; f[2, e_] := Switch[e, 1, -5, 2, 4, , 0]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 10 2023 *)

Formula

a(n) is multiplicative with a(2)= -5, a(4)= 4, a(2^e)= 0 if e>2. a(p)= -p^2, a(p^e)= 0 if e>1, p>2.
G.f. A(x) satisfies x * (1 - x) = Sum_{k>=1} k^2 * A(x^k).

A361987 a(1) = 1; a(n) = n^2 * Sum_{d|n, d < n} (-1)^(n/d) a(d) / d^2.

Original entry on oeis.org

1, 4, -9, 32, -25, -36, -49, 256, 0, -100, -121, -288, -169, -196, 225, 2048, -289, 0, -361, -800, 441, -484, -529, -2304, 0, -676, 0, -1568, -841, 900, -961, 16384, 1089, -1156, 1225, 0, -1369, -1444, 1521, -6400, -1681, 1764, -1849, -3872, 0, -2116, -2209, -18432, 0, 0, 2601, -5408, -2809, 0
Offset: 1

Views

Author

Seiichi Manyama, Apr 02 2023

Keywords

Crossrefs

Partial sums give A361983.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, -p^2, 0]; f[2, e_] := 2^(3*e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 09 2023 *)

Formula

a(n) is multiplicative with a(2^e) = 2^(3*e-1). a(p) = -p^2, a(p^e) = 0 if e>1, p>2.
G.f. A(x) satisfies -x = Sum_{k>=1} (-1)^k * k^2 * A(x^k).

A334879 a(1) = 1; a(n) = -(1/2) * Sum_{d|n, d > 1} d * (d + 1) * a(n/d).

Original entry on oeis.org

1, -3, -6, -1, -15, 15, -28, -3, -9, 35, -66, 6, -91, 63, 60, -9, -153, 27, -190, 15, 105, 143, -276, 21, -100, 195, -54, 28, -435, -75, -496, -27, 231, 323, 210, 18, -703, 399, 312, 55, -861, -105, -946, 66, 135, 575, -1128, 72, -441, 300, 510, 91, -1431, 189, 440
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2020

Keywords

Comments

Dirichlet inverse of the positive triangular numbers A000217.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, n, -(1/2) Sum[If[d > 1, d (d + 1) a[n/d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 55}]
  • PARI
    lista(nn) = {my(va=vector(nn)); va[1] = 1; for (n=2, nn, va[n] =  -sumdiv(n, d, if (d>1, d*(d + 1)*va[n/d]))/2;); va;} \\ Michel Marcus, May 15 2020

Formula

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} A000217(k) * A(x^k).
Dirichlet g.f.: 2 / (zeta(s-1) + zeta(s-2)).

A351654 Dirichlet g.f.: zeta(s) / (zeta(s-1) * zeta(s-2)).

Original entry on oeis.org

1, -5, -11, 3, -29, 55, -55, 3, 16, 145, -131, -33, -181, 275, 319, 3, -305, -80, -379, -87, 605, 655, -551, -33, 96, 905, 16, -165, -869, -1595, -991, 3, 1441, 1525, 1595, 48, -1405, 1895, 1991, -87, -1721, -3025, -1891, -393, -464, 2755, -2255, -33, 288, -480, 3355, -543, -2861, -80, 3799
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2022

Keywords

Comments

Dirichlet inverse of A069097.

Crossrefs

Programs

  • Mathematica
    A069097[n_] := Sum[GCD[n, k]^2, {k, 1, n}]; a[1] = 1; a[n_] := a[n] = -Sum[A069097[n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 55}]
    f[p_, e_] := If[e == 1, 0, p^3] - p^2 - p + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 25 2025 *)
  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA069097(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d));
    v351654 = DirInverseCorrect(vector(up_to, n, A069097(n)));
    A351654(n) = v351654[n]; \\ Antti Karttunen, Feb 16 2022
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X)*(1 - p^2*X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Feb 16 2022

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A069097(n/d) * a(d).
a(n) = Sum_{d|n} A023900(n/d) * A334657(d).
a(n) = Sum_{d|n} A046970(n/d) * A055615(d).
a(n) = Sum_{d|n} A000005(n/d) * A328254(d).
Multiplicative with a(p) = -p^2 - p + 1, and a(p^e) = p^3 - p^2 - p + 1 for e >= 2. - Amiram Eldar, May 25 2025
Showing 1-8 of 8 results.