cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A055615 a(n) = n * mu(n), where mu is the Möbius function A008683.

Original entry on oeis.org

1, -2, -3, 0, -5, 6, -7, 0, 0, 10, -11, 0, -13, 14, 15, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -30, -31, 0, 33, 34, 35, 0, -37, 38, 39, 0, -41, -42, -43, 0, 0, 46, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 58, -59, 0, -61, 62, 0, 0, 65, -66, -67, 0, 69, -70, -71, 0
Offset: 1

Views

Author

Michael Somos, Jun 04 2000

Keywords

Comments

Dirichlet inverse of n (A000027).
Absolute values give n if n is squarefree, otherwise 0.
a(n) is multiplicative because both mu(n) and n are. - Mitch Harris, Jun 09 2005
a(n) is multiplicative with a(p^1) = -p, a(p^e) = 0 if e > 1. - David W. Wilson, Jun 12 2005
Negative of the Moebius number of the dihedral group of order 2n. - Eric M. Schmidt, Jul 28 2013

Examples

			G.f. = x - 2*x^2 - 3*x^3 - 5*x^5 + 6*x^6 - 7*x^7 + 10*x^10 - 11*x^11 - 13*x^13 + ...
		

Crossrefs

Moebius transform of A023900.
Cf. A000027 (Dirichlet inverse), A061669 (sum with it).
Cf. A062004.
Cf. A013929 (positions of 0's), A068340 (partial sums), A261869 (first differences), A261890 (second differences).

Programs

  • Haskell
    a055615 n = a008683 n * n  -- Reinhard Zumkeller, Sep 04 2015
    
  • Magma
    [n*MoebiusMu(n): n in [1..80]]; // Vincenzo Librandi, Nov 19 2014
    
  • Maple
    with(numtheory): A055615:=n->n*mobius(n): seq(A055615(n), n=1..100); # Wesley Ivan Hurt, Nov 18 2014
  • Mathematica
    Table[n MoebiusMu[n], {n,80}] (* Harvey P. Dale, May 26 2011 *)
  • PARI
    {a(n) = if( n<1, 0, n * moebius(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 - p*X)[n])};
    
  • Python
    from sympy import mobius
    def A055615(n): return n*mobius(n) # Chai Wah Wu, Apr 01 2023
  • SageMath
    [n*moebius(n) for n in (1..100)] # G. C. Greubel, May 24 2022
    

Formula

a(n) = n * A008683(n).
Dirichlet g.f.: 1/zeta(s-1).
Multiplicative with a(p^e) = -p*0^(e-1), e>0 and p prime. - Reinhard Zumkeller, Jul 17 2003
Conjectures: lim b->1+ Sum n=1..inf a(n)*b^(-n) = -12 and lim b->1- Sum n=1..inf a(n)*b^n = -12 (+ indicates that b decreases to 1, - indicates it increases to 1), both considering that zeta(-1) = -1/12 and calculations (more generally mu(n)*n^s is Abel summable to zeta(-s)). - Gerald McGarvey, Sep 26 2004
Dirichlet generating function for the absolute value: zeta(s-1)/zeta(2s-2). - Franklin T. Adams-Watters, Sep 11 2005
G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} k*A(x^k). - Ilya Gutkovskiy, May 11 2019
Sum_{k=1..n} abs(a(k)) ~ 3*n^2/Pi^2. - Amiram Eldar, Feb 02 2024

A334657 Dirichlet g.f.: 1 / zeta(s-2).

Original entry on oeis.org

1, -4, -9, 0, -25, 36, -49, 0, 0, 100, -121, 0, -169, 196, 225, 0, -289, 0, -361, 0, 441, 484, -529, 0, 0, 676, 0, 0, -841, -900, -961, 0, 1089, 1156, 1225, 0, -1369, 1444, 1521, 0, -1681, -1764, -1849, 0, 0, 2116, -2209, 0, 0, 0, 2601, 0, -2809, 0, 3025, 0, 3249, 3364, -3481, 0, -3721
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2020

Keywords

Comments

Dirichlet inverse of A000290.
Moebius transform of A046970.
Inverse Moebius transform of A053822.

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n] n^2, {n, 61}]

Formula

G.f. A(x) satisfies: A(x) = x - 2^2 * A(x^2) - 3^2 * A(x^3) - 4^2 * A(x^4) - ...
a(1) = 1; a(n) = -n^2 * Sum_{d|n, d < n} a(d) / d^2.
a(n) = mu(n) * n^2.
Multiplicative with a(p^e) = -p^2 if e = 1 and 0 otherwise. - Amiram Eldar, Oct 25 2020

A334659 Dirichlet g.f.: 1 / zeta(s-3).

Original entry on oeis.org

1, -8, -27, 0, -125, 216, -343, 0, 0, 1000, -1331, 0, -2197, 2744, 3375, 0, -4913, 0, -6859, 0, 9261, 10648, -12167, 0, 0, 17576, 0, 0, -24389, -27000, -29791, 0, 35937, 39304, 42875, 0, -50653, 54872, 59319, 0, -68921, -74088, -79507, 0, 0, 97336, -103823, 0, 0, 0, 132651, 0, -148877
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2020

Keywords

Comments

Dirichlet inverse of A000578.
Moebius transform of A063453.
Inverse Moebius transform of A053825.

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n] n^3, {n, 53}]

Formula

G.f. A(x) satisfies: A(x) = x - 2^3 * A(x^2) - 3^3 * A(x^3) - 4^3 * A(x^4) - ...
a(1) = 1; a(n) = -n^3 * Sum_{d|n, d < n} a(d) / d^3.
a(n) = mu(n) * n^3.
Multiplicative with a(p^e) = -p^3 if e = 1 and 0 otherwise. - Amiram Eldar, Dec 05 2022

A336278 a(n) = Sum_{k=1..n} mu(k)*k^4.

Original entry on oeis.org

1, -15, -96, -96, -721, 575, -1826, -1826, -1826, 8174, -6467, -6467, -35028, 3388, 54013, 54013, -29508, -29508, -159829, -159829, 34652, 268908, -10933, -10933, -10933, 446043, 446043, 446043, -261238, -1071238, -1994759, -1994759, -808838, 527498, 2028123
Offset: 1

Views

Author

Donald S. McDonald, Jul 15 2020

Keywords

Comments

Conjecture: a(n) changes sign infinitely often.

Crossrefs

Programs

  • Mathematica
    Array[Sum[MoebiusMu[k]*k^4, {k, #}] &, 35] (* Michael De Vlieger, Jul 15 2020 *)
    Accumulate[Table[MoebiusMu[x]x^4,{x,40}]] (* Harvey P. Dale, Jan 14 2021 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*k^4); \\ Michel Marcus, Jul 15 2020
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A336278(n):
        if n <= 1:
            return 1
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c -= (j2*(j2**2*(j2*(6*j2 - 15) + 10) - 1)-j*(j**2*(j*(6*j - 15) + 10) - 1))//30*A336278(k1)
            j, k1 = j2, n//j2
        return c-(n*(n**2*(n*(6*n + 15) + 10) - 1)-j*(j**2*(j*(6*j - 15) + 10) - 1))//30 # Chai Wah Wu, Apr 04 2023

Formula

Partial sums of A334660.
From Seiichi Manyama, Apr 03 2023: (Start)
G.f. A(x) satisfies x = Sum_{k>=1} k^4 * (1 - x^k) * A(x^k).
Sum_{k=1..n} k^4 * a(floor(n/k)) = 1. (End)
Showing 1-4 of 4 results.