cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A059376 Jordan function J_3(n).

Original entry on oeis.org

1, 7, 26, 56, 124, 182, 342, 448, 702, 868, 1330, 1456, 2196, 2394, 3224, 3584, 4912, 4914, 6858, 6944, 8892, 9310, 12166, 11648, 15500, 15372, 18954, 19152, 24388, 22568, 29790, 28672, 34580, 34384, 42408, 39312, 50652, 48006, 57096
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059377 (J_4), A059378 (J_5), A069091 - A069095 (J_6 through J_10).

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 3)
    A059376 := proc(n)
        add(d^3*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, Nov 03 2015
  • Mathematica
    JordanJ[n_, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; f[n_] := JordanJ[n, 3]; Array[f, 39]
    f[p_, e_] := p^(3*e) - p^(3*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,120,print1(sumdiv(n,d,d^3*moebius(n/d)),","))
    
  • PARI
    for (n = 1, 1000, write("b059376.txt", n, " ", sumdiv(n, d, d^3*moebius(n/d))); ) \\ Harry J. Smith, Jun 26 2009
    
  • PARI
    seq(n) = dirmul(vector(n,k,k^3), vector(n,k,moebius(k)));
    seq(39)  \\ Gheorghe Coserea, May 11 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def A059376(n): return prod(p**(3*(e-1))*(p**3-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024

Formula

Multiplicative with a(p^e) = p^(3e) - p^(3e-3). - Vladeta Jovovic, Jul 26 2001
a(n) = Sum_{d|n} d^3*mu(n/d). - Benoit Cloitre, Apr 05 2002
Dirichlet generating function: zeta(s-3)/zeta(s). - Franklin T. Adams-Watters, Sep 11 2005
A063453(n) divides a(n). - R. J. Mathar, Mar 30 2011
a(n) = Sum_{k=1..n} gcd(k,n)^3 * cos(2*Pi*k/n). - Enrique Pérez Herrero, Jan 18 2013
a(n) = n^3*Product_{distinct primes p dividing n} (1-1/p^3). - Tom Edgar, Jan 09 2015
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x*(1 + 4*x + x^2)/(1 - x)^4. - Ilya Gutkovskiy, Apr 25 2017
Sum_{d|n} a(d) = n^3. - Werner Schulte, Jan 12 2018
Sum_{k=1..n} a(k) ~ 45*n^4 / (2*Pi^4). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^3 = 1/zeta(4) (A215267).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^3/(p^3-1)^2) = 1.2253556451... (End)
O.g.f.: Sum_{n >= 1} mu(n)*x^n*(1 + 4*x^n + x^(2*n))/(1 - x^n)^4 = x + 7*x^2 + 26*x^3 + 56*x^4 + 124*x^5 + .... - Peter Bala, Jan 31 2022
From Peter Bala, Jan 01 2024: (Start)
a(n) = Sum_{d divides n} d * J_2(d) * phi(n/d) = Sum_{d divides n} d^2 * phi(d) * J_2(n/d), where J_2(n) = A007434(n).
a(n) = Sum_{k = 1..n} gcd(k, n) * J_2(gcd(k, n)) = Sum_{1 <= j, k <= n} gcd(j, k, n)^2 * J_1(gcd(j, k, n)). (End)
a(n) = Sum_{1 <= i, j <= n, lcm(i, j) = n} phi(i)*J_2(j) = Sum_{1 <= i, j, k <= n, lcm(i, j, k) = n} phi(i)*phi(j)*phi(k), where J_2(n) = A007434(n). - Peter Bala, Jan 29 2024

A046970 Dirichlet inverse of the Jordan function J_2 (A007434).

Original entry on oeis.org

1, -3, -8, -3, -24, 24, -48, -3, -8, 72, -120, 24, -168, 144, 192, -3, -288, 24, -360, 72, 384, 360, -528, 24, -24, 504, -8, 144, -840, -576, -960, -3, 960, 864, 1152, 24, -1368, 1080, 1344, 72, -1680, -1152, -1848, 360, 192, 1584, -2208, 24, -48, 72, 2304, 504, -2808, 24, 2880, 144, 2880, 2520, -3480, -576
Offset: 1

Views

Author

Douglas Stoll, dougstoll(AT)email.msn.com

Keywords

Comments

B(n+2) = -B(n)*((n+2)*(n+1)/(4*Pi^2))*z(n+2)/z(n) = -B(n)*((n+2)*(n+1)/(4*Pi^2)) * Sum_{j>=1} a(j)/j^(n+2).
Apart from signs also Sum_{d|n} core(d)^2*mu(n/d) where core(x) is the squarefree part of x. - Benoit Cloitre, May 31 2002

Examples

			a(3) = -8 because the divisors of 3 are {1, 3} and mu(1)*1^2 + mu(3)*3^2 = -8.
a(4) = -3 because the divisors of 4 are {1, 2, 4} and mu(1)*1^2 + mu(2)*2^2 + mu(4)*4^2 = -3.
E.g., a(15) = (3^2 - 1) * (5^2 - 1) = 8*24 = 192. - _Jon Perry_, Aug 24 2010
G.f. = x - 3*x^2 - 8*x^3 - 3*x^4 - 24*x^5 + 24*x^6 - 48*x^7 - 3*x^8 - 8*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965, pp. 805-811.
  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, p. 48.

Crossrefs

Dirichlet inverse of Jordan totient function J_r(n): A023900 (r = 1), A063453(r = 3), A189922 (r = 4).

Programs

  • Haskell
    a046970 = product . map ((1 -) . (^ 2)) . a027748_row
    -- Reinhard Zumkeller, Jan 19 2012
    
  • Maple
    Jinvk := proc(n,k) local a,f,p ; a := 1 ; for f in ifactors(n)[2] do p := op(1,f) ; a := a*(1-p^k) ; end do: a ; end proc:
    A046970 := proc(n) Jinvk(n,2) ; end proc: # R. J. Mathar, Jul 04 2011
  • Mathematica
    muDD[d_] := MoebiusMu[d]*d^2; Table[Plus @@ muDD[Divisors[n]], {n, 60}] (Lopez)
    Flatten[Table[{ x = FactorInteger[n]; p = 1; For[i = 1, i <= Length[x], i++, p = p*(1 - x[[i]][[1]]^2)]; p}, {n, 1, 50, 1}]] (* Jon Perry, Aug 24 2010 *)
    a[ n_] := If[ n < 1, 0, Sum[ d^2 MoebiusMu[ d], {d, Divisors @ n}]]; (* Michael Somos, Jan 11 2014 *)
    a[ n_] := If[ n < 2, Boole[ n == 1], Times @@ (1 - #[[1]]^2 & /@ FactorInteger @ n)]; (* Michael Somos, Jan 11 2014 *)
  • PARI
    A046970(n)=sumdiv(n,d,d^2*moebius(d)) \\ Benoit Cloitre
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, (1 - X*p^2) / (1 - X))[n])}; /* Michael Somos, Jan 11 2014 */
    
  • Python
    from math import prod
    from sympy import primefactors
    def A046970(n): return prod(1-p**2 for p in primefactors(n)) # Chai Wah Wu, Sep 08 2023

Formula

Multiplicative with a(p^e) = 1 - p^2.
a(n) = Sum_{d|n} mu(d)*d^2.
abs(a(n)) = Product_{p prime divides n} (p^2 - 1). - Jon Perry, Aug 24 2010
From Wolfdieter Lang, Jun 16 2011: (Start)
Dirichlet g.f.: zeta(s)/zeta(s-2).
a(n) = J_{-2}(n)*n^2, with the Jordan function J_k(n), with J_k(1):=1. See the Apostol reference, p. 48. exercise 17. (End)
a(prime(n)) = -A084920(n). - R. J. Mathar, Aug 28 2011
G.f.: Sum_{k>=1} mu(k)*k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017
a(n) = Sum_{d divides n} d * (sigma_1(d))^(-1) * sigma_1(n/d), where (sigma_1(n))^(-1) = A046692(n) denotes the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024
a(n) = A076479(n) * A322360(n). - Amiram Eldar, Feb 02 2024

Extensions

Corrected and extended by Vladeta Jovovic, Jul 25 2001
Additional comments from Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Jul 01 2005

A053820 a(n) = Sum_{k=1..n, gcd(n,k) = 1} k^4.

Original entry on oeis.org

1, 1, 17, 82, 354, 626, 2275, 3108, 7395, 9044, 25333, 17668, 60710, 50470, 88388, 103496, 243848, 129750, 432345, 266088, 497574, 497178, 1151403, 539912, 1541770, 1153724, 1900089, 1516844, 3756718, 1246568, 5273999
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2000

Keywords

Comments

If gcd(n,30) = 1, then a(n) is divisible by n. If n has at least one prime factor == 1 (mod 30), then a(n) is divisible by n. - Jianing Song, Jul 13 2018

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 15, the function phi_4(n).
  • L. E. Dickson, History of the Theory of Numbers, Vol. I (Reprint 1966), p. 140.

Crossrefs

Column k=4 of A308477.

Programs

  • Mathematica
    a[n_] := Sum[If[GCD[n, k] == 1, k^4, 0], {k, 1, n}]; Table[a[n], {n, 1, 31}] (* Jean-François Alcover, Feb 26 2014 *)
    a[1] = 1; a[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; (n^4/5) * Times @@ ((p - 1)*p^(e - 1)) + (n^3/3) * Times @@ (1 - p) - (n/30) * Times @@ (1 - p^3)]; Array[a, 100] (* Amiram Eldar, Dec 03 2023 *)
  • PARI
    a(n) = sum(k=1, n, (gcd(n,k) == 1)*k^4); \\ Michel Marcus, Feb 26 2014
    
  • PARI
    a(n) = {my(f = factor(n)); if(n == 1, 1, (n^4/5) * eulerphi(f) + (n^3/3) * prod(i = 1, #f~, 1 - f[i, 1]) - (n/30) * prod(i = 1, #f~, 1 - f[i, 1]^3));} \\ Amiram Eldar, Dec 03 2023

Formula

a(n) = (6*n^4*A000010(n)+10*n^3*A023900(n)-n*A063453(n))/30 for n>1. Formula is derived from a more general formula of A. Thacker (1850), see [Dickson, Brown]. - Franz Vrabec, Aug 21 2005
G.f. A(x) satisfies: A(x) = x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^6 - Sum_{k>=2} k^4 * A(x^k). - Ilya Gutkovskiy, Mar 29 2020
Sum_{k=1..n} a(k) ~ n^6 / (5*Pi^2). - Amiram Eldar, Dec 03 2023

A011785 Number of 3 X 3 matrices whose determinant is 1 mod n.

Original entry on oeis.org

1, 168, 5616, 43008, 372000, 943488, 5630688, 11010048, 36846576, 62496000, 212427600, 241532928, 810534816, 945955584, 2089152000, 2818572288, 6950204928, 6190224768, 16934047920, 15998976000, 31621943808, 35687836800
Offset: 1

Views

Author

Benjamin T. Love (benlove(AT)preston.polaristel.net)

Keywords

Comments

Order of the group SL(3,Z_n). For n > 2, a(n) is divisible by 48. - Jianing Song, Nov 24 2018

Crossrefs

Cf. A000056 (SL(2,Z_n)), A011786 (SL(4,Z_n)).
Cf. A000252 (GL(2,Z_n)), A064767 (GL(3,Z_n)), A305186 (GL(4,Z_n)).

Programs

  • Mathematica
    a[n_] := (n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]])/EulerPhi[n]; a[1] = 1; Array[a, 30] (* Jean-François Alcover, Mar 21 2017 *)
  • PARI
    a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k)))/eulerphi(n); \\ Michel Marcus, Jun 30 2015
    
  • Python
    from math import prod
    from sympy import factorint
    def A011785(n): return prod(p**((e<<3)-5)*(p**2*(p*(p-1)*(p+1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025

Formula

Multiplicative with a(p^e) = p^(8*e-5)*(p^3 - 1)*(p^2 - 1). - Vladeta Jovovic, Nov 18 2001
For a formula see A064767.
a(n) = A046970(n)*A063453(n)*A000578(n)*A003557(n)^5. - R. J. Mathar, Mar 30 2011
a(n) = A064767(n)/phi(n). - Jianing Song, Nov 24 2018
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^5/((p-1)^3 * (p+1)^2 * (p^2 + p + 1) * (p^6 + p^4 + p^2 + 1))) = 1.0061577672748872278355775942508642214184417621389767880397578015151659965... - Vaclav Kotesovec, Sep 19 2020
Sum_{k=1..n} a(k) ~ c * n^9, where c = (1/9) * Product_{p prime} (1 - (p^3 + p^2 -1)/p^6) = 0.08630488937... . - Amiram Eldar, Oct 23 2022

Extensions

More terms from John W. Layman, Feb 16 2001
Further terms from Vladeta Jovovic, Oct 29 2001

A189922 Jordan function J_{-4} multiplied by n^4.

Original entry on oeis.org

1, -15, -80, -15, -624, 1200, -2400, -15, -80, 9360, -14640, 1200, -28560, 36000, 49920, -15, -83520, 1200, -130320, 9360, 192000, 219600, -279840, 1200, -624, 428400, -80, 36000, -707280, -748800, -923520, -15, 1171200, 1252800, 1497600, 1200, -1874160
Offset: 1

Views

Author

Wolfdieter Lang, Jun 16 2011

Keywords

Comments

For the Jordan function J_k see the Comtet and Apostol references.

Examples

			a(2) = a(4) = a(8) = ... = 1 - 2^4 = -15.
a(4) = mu(1)*1^4 + mu(2)*2^4 + mu(4)*4^4 = 1 - 16 + 0 = -15.
Sum identity for n=4: a(1)*(4/1)^4 + a(2)*(4/2)^4 + a(4)*(4/4)^4 = 256 - 15*16 - 15 = 1.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1986.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A023900 (k=-1), A046970 (k=-2), A063453 (k=-3).

Programs

  • Maple
    a:= n-> mul(1-i[1]^4, i=ifactors(n)[2]):
    seq(a(n), n=1..48);  # Alois P. Heinz, Jan 26 2024
  • Mathematica
    a[n_] := Sum[ MoebiusMu[d]*d^4, {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Sep 03 2012 *)
    f[p_, e_] := (1-p^4); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 08 2020 *)
  • PARI
    for (n=1, 30, print1(sumdiv(n, d, moebius(d) * d^4),", ")); \\ Indranil Ghosh, Mar 11 2017

Formula

a(n) = J_{-4}(n)*n^4 = Product_{p prime | n} (1 - p^4), for n>=2, a(1)=1.
a(n) = Sum_{d|n} mu(d)*d^4 with the Moebius function mu = A008683.
Dirichlet g.f.: zeta(s)/zeta(s-4).
Sum identity: Sum_{d|n} a(n)*(n/d)^4 = 1 for all n>=1.
a(n) = a(rad(n)) with rad(n) = A007947(n), the squarefree kernel of n.
G.f.: Sum_{k>=1} mu(k)*k^4*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017
a(n) = Sum_{d divides n} d * sigma_3(d)^(-1) * sigma_1(n/d), where sigma_3(n)^(-1) = A053825(n) denotes the Dirichlet inverse of sigma_3(n). - Peter Bala, Jan 26 2024

A321222 a(n) = Sum_{d|n} mu(d)*d^n.

Original entry on oeis.org

1, -3, -26, -15, -3124, 45864, -823542, -255, -19682, 9990233352, -285311670610, 2176246800, -302875106592252, 11111328602468784, 437893859848932344, -65535, -827240261886336764176, 101559568985784, -1978419655660313589123978, 99999904632567310800
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[d] d^n, {d, Divisors[n]}], {n, 20}]
    nmax = 20; Rest[CoefficientList[Series[Sum[MoebiusMu[k] (k x)^k/(1 - (k x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Product[1 - Boole[PrimeQ[d]] d^n, {d, Divisors[n]}], {n, 20}]
  • PARI
    a(n) = sumdiv(n, d, moebius(d)*d^n) \\ Andrew Howroyd, Nov 06 2018

Formula

G.f.: Sum_{k>=1} mu(k)*(k*x)^k/(1 - (k*x)^k).
a(n) = Product_{p|n, p prime} (1 - p^n).

A334659 Dirichlet g.f.: 1 / zeta(s-3).

Original entry on oeis.org

1, -8, -27, 0, -125, 216, -343, 0, 0, 1000, -1331, 0, -2197, 2744, 3375, 0, -4913, 0, -6859, 0, 9261, 10648, -12167, 0, 0, 17576, 0, 0, -24389, -27000, -29791, 0, 35937, 39304, 42875, 0, -50653, 54872, 59319, 0, -68921, -74088, -79507, 0, 0, 97336, -103823, 0, 0, 0, 132651, 0, -148877
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2020

Keywords

Comments

Dirichlet inverse of A000578.
Moebius transform of A063453.
Inverse Moebius transform of A053825.

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n] n^3, {n, 53}]

Formula

G.f. A(x) satisfies: A(x) = x - 2^3 * A(x^2) - 3^3 * A(x^3) - 4^3 * A(x^4) - ...
a(1) = 1; a(n) = -n^3 * Sum_{d|n, d < n} a(d) / d^3.
a(n) = mu(n) * n^3.
Multiplicative with a(p^e) = -p^3 if e = 1 and 0 otherwise. - Amiram Eldar, Dec 05 2022

A189923 Jordan function J_{-5}(n) multiplied by n^5.

Original entry on oeis.org

1, -31, -242, -31, -3124, 7502, -16806, -31, -242, 96844, -161050, 7502, -371292, 520986, 756008, -31, -1419856, 7502, -2476098, 96844, 4067052, 4992550, -6436342, 7502, -3124, 11510052, -242, 520986, -20511148, -23436248
Offset: 1

Views

Author

Wolfdieter Lang, Jun 16 2011

Keywords

Comments

For the Jordan function J_k see the Comtet and Apostol references.

Examples

			a(2) = a(4) = a(8) = ... = 1 - 2^5 = -31.
a(4) = mu(1)*1^5 + mu(2)*2^5 + mu(4)*4^5 = 1 - 32 + 0 = -31.
Sum identity for n=4: a(1)*(4/1)^5 + a(2)*(4/2)^5 + a(4)*(4/4)^5 = 1024 - 31*32 - 31 = 1.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1986.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A023900, A046970, A063453, A189922, for k=-1..-4.

Programs

  • Mathematica
    a[n_] := Sum[ MoebiusMu[d]*d^5, {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Sep 03 2012 *)
    f[p_, e_] := (1-p^5); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 08 2020 *)
  • PARI
    for(n=1, 200, print1(sumdiv(n, d, moebius(d) * d^5),", ")) \\ Indranil Ghosh, Mar 11 2017
    
  • PARI
    a(n) = sumdiv(n, d, moebius(d) * d^5); \\ Michel Marcus, Jan 14 2018

Formula

a(n) = J_{-5}(n)*n^5 = Product_{p prime |n} (1-p^5), for n>=2, a(1)=1.
a(n) = Sum_{d|n} mu(d)*d^5 with the Moebius function mu = A008683.
Dirichlet g.f.: zeta(s)/zeta(s-5).
Sum identity: Sum_{d|n} a(n)*(n/d)^5 = 1 for all n>=1.
a(n) = a(rad(n)) with rad(n) = A007947(n), the squarefree kernel of n.
G.f.: Sum_{k>=1} mu(k)*k^5*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017

A328640 Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-3)).

Original entry on oeis.org

1, -9, -28, 9, -126, 252, -344, -9, 28, 1134, -1332, -252, -2198, 3096, 3528, 9, -4914, -252, -6860, -1134, 9632, 11988, -12168, 252, 126, 19782, -28, -3096, -24390, -31752, -29792, -9, 37296, 44226, 43344, 252, -50654, 61740, 61544, 1134, -68922, -86688, -79508, -11988, -3528
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2019

Keywords

Comments

Dirichlet inverse of A065959.

Crossrefs

Cf. A008683, A008836, A026424 (positions of negative terms), A063453, A065959, A323363, A328639.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^3, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 45}]
    Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^3 &], {n, 1, 45}]
    f[p_, e_] := (-1)^e*(p^3+1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
  • PARI
    a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^3)} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA065959(n/d) * a(d).
a(n) = Sum_{d|n} lambda(n/d) * mu(d) * d^3, where lambda = A008836 and mu = A008683.
Multiplicative with a(p^) = (-1)^e*(p^3+1). - Amiram Eldar, Dec 03 2022

A069056 Numbers k such that Sum_{d|k} d^2*mu(d) divides k^2.

Original entry on oeis.org

1, 12, 24, 36, 48, 72, 96, 108, 120, 144, 192, 216, 240, 288, 324, 336, 360, 384, 432, 480, 576, 600, 648, 672, 720, 768, 864, 960, 972, 1008, 1080, 1152, 1200, 1296, 1344, 1440, 1536, 1728, 1800, 1920, 1944, 2016, 2160, 2304, 2352, 2400, 2448, 2592, 2688
Offset: 1

Views

Author

Benoit Cloitre, Apr 07 2002

Keywords

Comments

Numbers k such that A046970(k) divides k^2. [corrected by Amiram Eldar, Apr 20 2025]
If n > 1, a(n+1) - a(n) == 0 (mod 12), so a(n+1) - a(n) = 12 for n=2,3,4,5,7,8,...; a(n+1) - a(n) = 24 for n=6,9,.... Conjecture: if c > 2 and n > 1, Sum_{d|n} d^c*mu(d) never divides n^c. Hence A063453(n) never divides n^3 for n > 1.

Crossrefs

Programs

  • Haskell
    a069056 n = a069056_list !! (n-1)
    a069056_list = filter (\x -> x ^ 2 `mod` a046970 x == 0) [1..]
    -- Reinhard Zumkeller, Jan 19 2012
  • Mathematica
    f[d_] := d^2*MoebiusMu[d]; ok[n_] := Divisible[n^2, Total[f /@ Divisors[n]]]; Select[Range[3000], ok] (* Jean-François Alcover, Nov 15 2011 *)
    q[k_] := Divisible[k^2, Times @@ ((First[#]^2-1)& /@ FactorInteger[k])]; q[1] = True; Select[Range[3000], q] (* Amiram Eldar, Apr 20 2025 *)
  • PARI
    for(n=1,1000,if(n^2%sumdiv(n,d,moebius(d)*d^2)==0,print1(n,",")))
    
  • PARI
    isok(k) = {my(f = factor(k)); !(k^2 % prod(i = 1, #f~, f[i,1]^2-1));} \\ Amiram Eldar, Apr 20 2025
    
Showing 1-10 of 11 results. Next