A350156
Inverse Moebius transform of A000056.
Original entry on oeis.org
1, 7, 25, 55, 121, 175, 337, 439, 673, 847, 1321, 1375, 2185, 2359, 3025, 3511, 4897, 4711, 6841, 6655, 8425, 9247, 12145, 10975, 15121, 15295, 18169, 18535, 24361, 21175, 29761, 28087, 33025, 34279, 40777, 37015, 50617, 47887, 54625, 53119, 68881, 58975, 79465, 72655, 81433, 85015
Offset: 1
-
f[p_, e_] := p^(3*e) - (p - 1)*(p^(3*e) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Jan 19 2022 *)
-
from math import prod
from sympy import factorint
def A350156(n): return prod((q:=p**(3*e))-(p-1)*(q-1)//(p**3-1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
Original entry on oeis.org
1, 1, 7, 31, 100, 364, 1152, 3864, 12102, 37358, 113618, 337562, 990798, 2857926, 8144334, 22902470, 63660695, 175026047, 476242001, 1283435153, 3427047146, 9072455146, 23820491998, 62057045134, 160471504373, 412022656517, 1050740365571, 2662223436203
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[DivisorSigma[4, k^2]/DivisorSigma[2, k^2]*a[n-k], {k, 1, n}]/n; Table[a[n], {n, 0, 30}] (* Vaclav Kotesovec, Mar 04 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(exp(sum(k=1, N, sigma(k^2, 4)/sigma(k^2, 2)*x^k/k)))
A065501
Number of conjugacy classes in the group SL(2,Z_n) (see A000056).
Original entry on oeis.org
1, 3, 7, 10, 9, 21, 11, 30, 25, 27, 15, 70, 17, 33, 63, 76, 21, 75, 23, 90, 77, 45, 27, 210, 49, 51, 79, 110, 33, 189, 35, 168, 105, 63, 99, 250, 41, 69, 119, 270, 45, 231, 47, 150, 225, 81, 51, 532, 81, 147, 147, 170, 57, 237, 135, 330, 161, 99, 63, 630, 65, 105, 275, 352, 153
Offset: 1
Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Nov 25 2001
a(23) corrected and more terms from
Robin Visser, Aug 06 2023
A007434
Jordan function J_2(n) (a generalization of phi(n)).
Original entry on oeis.org
1, 3, 8, 12, 24, 24, 48, 48, 72, 72, 120, 96, 168, 144, 192, 192, 288, 216, 360, 288, 384, 360, 528, 384, 600, 504, 648, 576, 840, 576, 960, 768, 960, 864, 1152, 864, 1368, 1080, 1344, 1152, 1680, 1152, 1848, 1440, 1728, 1584, 2208, 1536
Offset: 1
a(4) = 12 because the divisors of 4 being 1, 2, 4, we find that phi(1)*phi(4/1)*(4/1) = 8, phi(2)*phi(4/2)*(4/2) = 2, phi(4)*phi(4/4)*(4/4) = 2 and 8 + 2 + 2 = 12.
G.f. = x + 3*x^2 + 8*x^3 + 12*x^4 + 24*x^5 + 24*x^6 + 48*x^7 + 48*x^8 + 72*x^9 + ...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
- A. Del Centina, Poncelet's porism: a long story of renewed discoveries, I, Hist. Exact Sci. (2016), v. 70, p. 106.
- L. E. Dickson (1919, repr. 1971). History of the Theory of Numbers I. Chelsea. p. 147.
- P. J. McCarthy, Introduction to Arithmetical Functions, Universitext, Springer, New York, NY, USA, 1986.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Section 6, Problem 64.
- M. Ram Murty (2001). Problems in Analytic Number Theory. Graduate Texts in Mathematics. 206. Springer-Verlag. p. 11.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Sukumar Das Adhikari and A. Sankaranarayanan, On an error term related to the Jordan totient function Jk(n), Journal of Number Theory Volume 34, Issue 2, February 1990, Pages 178-188.
- Dorin Andrica and Mihai Piticari, On Some Extensions Of Jordan's Arithmetic Functions, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics - ICTAMI 2003, Alba Iulia.
- E. Artal Bartolo, P. D. González Pérez, M. González Villa, and E. León-Cardenal, On a suspension formula for Denef-Loeser zeta functions, arXiv:2502.05022 [math.AG], 2025. See p. 19.
- Theo Douvropoulos, Joel Brewster Lewis, and Alejandro H. Morales, Hurwitz numbers for reflection groups III: Uniform formulas, arXiv:2308.04751 [math.CO], 2023, see p. 32.
- F. A. Lewis and others, Problem 4002, Amer. Math. Monthly, Vol. 49, No. 9, Nov. 1942, pp. 618-619.
- H. Li and T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 38.
- MathOverflow, Averages of euler-phi function and similar.
- Carl-Fredrik Nyberg-Brodda, On congruence subgroups of SL_2(Z[1/p]) generated by two parabolic elements, arXiv:2312.11258 [math.GR], 2023.
- Nittiya Pabhapote and Vichian Laohakosol, Combinatorial Aspects of the Generalized Euler's Totient, International Journal of Mathematics and Mathematical Sciences, Volume 2010 (2010), Article ID 648165, 15 p.
- Wolfgang Schramm, The Fourier transform of functions of the greatest common divisor, Electronic Journal of Combinatorial Number Theory A50 (8(1)), 2008.
- N. J. A. Sloane, Transforms.
- S. Thajoddin and S. Vangipuram, A Note On Jordan's Totient Function, Indian J. Pure Appl. Math, 1988.
- László Tóth, Multiplicative arithmetic functions of several variables: a survey, arXiv preprint arXiv:1310.7053 [math.NT], 2013.
- Wikipedia, Jordan's totient function.
- Index to divisibility sequences
-
a007434 n = sum $ zipWith3 (\x y z -> x * y * z)
tdivs (reverse tdivs) (reverse divs)
where divs = a027750_row n; tdivs = map a000010 divs
-- Reinhard Zumkeller, Nov 24 2012
-
J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end; # (with k = 2)
A007434 := proc(n)
add(d^2*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
end proc: # R. J. Mathar, Nov 03 2015
-
jordanTotient[n_, k_:1] := DivisorSum[n, #^k*MoebiusMu[n/#] &] /; (n > 0) && IntegerQ[n]; Table[jordanTotient[n, 2], {n, 48}] (* Enrique Pérez Herrero, Sep 14 2010 *)
a[ n_] := If[ n < 1, 0, Sum[ d^2 MoebiusMu[ n/d], {d, Divisors @ n}]]; (* Michael Somos, Jan 11 2014 *)
a[ n_] := If[ n < 2, Boole[ n == 1], n^2 (Times @@ ((1 - 1/#[[1]]^2) & /@ FactorInteger @ n))]; (* Michael Somos, Jan 11 2014 *)
jordanTotient[n_Integer?Positive, r_:1] := DirichletConvolve[MoebiusMu[K], K^r, K, n]; Table[jordanTotient[n, 2], {n, 48}] (* Jan Mangaldan, Jun 03 2016 *)
-
{a(n) = if( n<1, 0, sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 20 2004 */
-
{a(n) = if( n<1, 0, direuler( p=2, n, (1 - X) / (1 - X*p^2))[n])}; /* Michael Somos, Jan 11 2014 */
-
seq(n) = dirmul(vector(n,k,k^2), vector(n,k,moebius(k)));
seq(48) \\ Gheorghe Coserea, May 11 2016
-
jordan(n,k)=my(a=n^k);fordiv(n,i,if(isprime(i),a*=(1-1/(i^k))));a \\ Roderick MacPhee, May 05 2017
-
from math import prod
from sympy import factorint
def A007434(n): return prod(p**(e-1<<1)*(p**2-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jan 29 2024
A000252
Number of invertible 2 X 2 matrices mod n.
Original entry on oeis.org
1, 6, 48, 96, 480, 288, 2016, 1536, 3888, 2880, 13200, 4608, 26208, 12096, 23040, 24576, 78336, 23328, 123120, 46080, 96768, 79200, 267168, 73728, 300000, 157248, 314928, 193536, 682080, 138240, 892800, 393216, 633600, 470016, 967680, 373248, 1822176, 738720
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, arXiv:math/0605185 [math.GR], 2006.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no 10, 917-923.
- J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29 , Iss. 1, 2005.
The order of GL_2(K) for a finite field K is in sequence
A059238.
-
Table[n*EulerPhi[n]*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}], {n, 21}] (* Jean-François Alcover, Apr 04 2011, after Vladeta Jovovic *)
-
a(n)=my(f=factor(n)[,1]); n^4*prod(i=1,#f, (1-1/f[i]^2)*(1-1/f[i])) \\ Charles R Greathouse IV, Feb 06 2017
-
from math import prod
from sympy import factorint
def A000252(n): return prod(p**((e<<2)-3)*(p*(p*(p-1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A064767
Order of automorphism group of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).
Original entry on oeis.org
1, 168, 11232, 86016, 1488000, 1886976, 33784128, 44040192, 221079456, 249984000, 2124276000, 966131712, 9726417792, 5675733504, 16713216000, 22548578304, 111203278848, 37141348608, 304812862560, 127991808000
Offset: 1
Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 24 2001
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, arXiv:math/0605185 [math.GR], 2006.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no 10, 917-923.
- J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29 , Iss. 1, 2005.
- Index entries for sequences related to groups.
-
a[n_] := n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]]; a[1] = 1; Array[a, 20] (* Jean-François Alcover, Mar 21 2017 *)
-
a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k))); \\ Michel Marcus, Jun 30 2015
-
a(n,f=factor(n))=prod(i=1,#f~, ((1 - 1/f[i,1]^3)*(1 - 1/f[i,1]^2)*(1 - 1/f[i,1])))*n^9 \\ Charles R Greathouse IV, Mar 04 2025
-
from math import prod
from sympy import factorint
def A064767(n): return prod(p**(3*(3*e-2))*(p*(p*(p**2*(p*(p-1)-1)+1)+1)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A305186
Number of invertible 4 X 4 matrices mod n.
Original entry on oeis.org
1, 20160, 24261120, 1321205760, 116064000000, 489104179200, 27811094169600, 86586540687360, 1044361663787520, 2339850240000000, 41393302251840000, 32053931488051200, 610296923230525440, 560671658459136000, 2815842631680000000, 5674535530486824960
Offset: 1
- Jianing Song, Table of n, a(n) for n = 1..10000
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, arXiv:math/0605185 [math.GR], 2006.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no 10, 917-923.
- J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29, Iss. 1, 2005.
-
{1}~Join~Array[#^16*Product[(1 - 1/p^4) (1 - 1/p^3) (1 - 1/p^2) (1 - 1/p), {p, FactorInteger[#][[All, 1]]}] &, 12, 2] (* Michael De Vlieger, May 27 2018 *)
-
a(n)=my(f=factor(n)[, 1]); n^16*prod(i=1, #f, (1-1/f[i]^4)*(1-1/f[i]^3)*(1-1/f[i]^2)*(1-1/f[i]))
-
from math import prod
from sympy import factorint
def A305186(n): return prod(p**((e<<3)-5<<1)*(p*(p*(p**3*(p**3*(p*(p-1)-1)+2)-1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A011785
Number of 3 X 3 matrices whose determinant is 1 mod n.
Original entry on oeis.org
1, 168, 5616, 43008, 372000, 943488, 5630688, 11010048, 36846576, 62496000, 212427600, 241532928, 810534816, 945955584, 2089152000, 2818572288, 6950204928, 6190224768, 16934047920, 15998976000, 31621943808, 35687836800
Offset: 1
Benjamin T. Love (benlove(AT)preston.polaristel.net)
-
a[n_] := (n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]])/EulerPhi[n]; a[1] = 1; Array[a, 30] (* Jean-François Alcover, Mar 21 2017 *)
-
a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k)))/eulerphi(n); \\ Michel Marcus, Jun 30 2015
-
from math import prod
from sympy import factorint
def A011785(n): return prod(p**((e<<3)-5)*(p**2*(p*(p-1)*(p+1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A011786
Number of 4 X 4 matrices whose determinant is 1 mod n.
Original entry on oeis.org
1, 20160, 12130560, 660602880, 29016000000, 244552089600, 4635182361600, 21646635171840, 174060277297920, 584962560000000, 4139330225184000, 8013482872012800, 50858076935877120, 93445276409856000, 351980328960000000, 709316941310853120, 2851903720876769280
Offset: 1
benlove(AT)preston.polaristel.net (Benjamin T. Love)
-
f[p_, e_] := (1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2); a[1] = 1; a[n_] := n^15 * Times @@ f @@@ FactorInteger[n]; Array[a, 17] (* Amiram Eldar, Oct 23 2022 *)
-
a(n) = f = factor(n); n^16/eulerphi(n) * prod(i=1, #f~, (1-1/f[i,1]^4)*(1-1/f[i,1]^3)*(1-1/f[i,1]^2)*(1-1/f[i,1])); \\ Michel Marcus, Sep 02 2013
-
from math import prod
from sympy import factorint
def A011786(n): return prod(p**(3*(5*e-3))*(p**2*(p*(p*(p*(p*(p*(p-1)*(p+1)-1)-1)+1)+1)+1)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A316564
Triangle read by rows: T(n,k) is the number of elements of the group SL(2, Z(n)) with order k, 1 <= k <= A316563(n).
Original entry on oeis.org
1, 1, 3, 2, 1, 1, 8, 6, 0, 8, 1, 7, 8, 24, 0, 8, 1, 1, 20, 30, 24, 20, 0, 0, 0, 24, 1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12, 1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48, 1, 15, 32, 144, 0, 96, 0, 96, 1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144
Offset: 1
Triangle begins:
1;
1, 3, 2;
1, 1, 8, 6, 0, 8;
1, 7, 8, 24, 0, 8;
1, 1, 20, 30, 24, 20, 0, 0, 0, 24;
1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12;
1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48;
1, 15, 32, 144, 0, 96, 0, 96;
1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144;
...
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, my(t=MatOrder(M)); while(#L
Showing 1-10 of 25 results.
Comments