A372962
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( n/gcd(x_1, x_2, x_3, n) )^2.
Original entry on oeis.org
1, 29, 235, 925, 3101, 6815, 16759, 29597, 57097, 89929, 160931, 217375, 371125, 486011, 728735, 947101, 1419569, 1655813, 2475739, 2868425, 3938365, 4666999, 6435815, 6955295, 9690601, 10762625, 13874563, 15502075, 20510309, 21133315, 28628191, 30307229, 37818785
Offset: 1
-
f[p_, e_] := (p^(5*e+5) - p^(5*e+2) + p^2 - 1)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^2*sigma(d, 5));
A372964
a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} ( n/gcd(x_1, x_2, x_3, x_4, n) )^3.
Original entry on oeis.org
1, 121, 2161, 15481, 78001, 261481, 823201, 1981561, 4726081, 9438121, 19485841, 33454441, 62746321, 99607321, 168560161, 253639801, 410333761, 571855801, 893864881, 1207533481, 1778937361, 2357786761, 3404813281, 4282153321, 6093828001, 7592304841, 10335939121
Offset: 1
-
f[p_, e_] := (p^(7*e+7) - p^(7*e+3) + p^3 - 1)/(p^7-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^3*sigma(d, 7));
A372968
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals, where T(n,k) = Sum_{1 <= x_1, x_2, ..., x_k <= n} n/gcd(x_1, x_2, ..., x_k, n).
Original entry on oeis.org
1, 1, 3, 1, 7, 7, 1, 15, 25, 11, 1, 31, 79, 55, 21, 1, 63, 241, 239, 121, 21, 1, 127, 727, 991, 621, 175, 43, 1, 255, 2185, 4031, 3121, 1185, 337, 43, 1, 511, 6559, 16255, 15621, 7471, 2395, 439, 61, 1, 1023, 19681, 65279, 78121, 45801, 16801, 3823, 673, 63
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 7, 15, 31, 63, 127, ...
7, 25, 79, 241, 727, 2185, ...
11, 55, 239, 991, 4031, 16255, ...
21, 121, 621, 3121, 15621, 78121, ...
21, 175, 1185, 7471, 45801, 277495, ...
-
f[p_, e_, k_] := (p^((k + 1)*e + k + 1) - p^((k + 1)*e + 1) + p - 1)/(p^(k + 1) - 1); T[1, k_] := 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 25 2024 *)
-
T(n, k) = sumdiv(n, d, moebius(n/d)*n/d*sigma(d, k+1));
A373059
a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, n)/gcd(x_1, x_2, n).
Original entry on oeis.org
1, 5, 13, 25, 41, 65, 85, 121, 157, 205, 221, 325, 313, 425, 533, 569, 545, 785, 685, 1025, 1105, 1105, 1013, 1573, 1441, 1565, 1777, 2125, 1625, 2665, 1861, 2617, 2873, 2725, 3485, 3925, 2665, 3425, 4069, 4961, 3281, 5525, 3613, 5525, 6437, 5065, 4325, 7397, 5965
Offset: 1
-
f[p_, e_] := (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 27 2024 *)
-
a(n) = sum(i=1, n, sum(j=1, n, gcd(i, n)/gcd([i, j, n])));
-
a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; (p^(2*e)*((e+1)*p^2 + 2*p-e) + 1)/(p+1)^2);} \\ Amiram Eldar, May 27 2024
A373103
a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( n/gcd(x_1, x_2, x_3, x_4, x_5, n) )^4.
Original entry on oeis.org
1, 497, 19603, 254449, 1952501, 9742691, 40351207, 130277873, 385845769, 970392997, 2357933051, 4987963747, 10604470813, 20054549879, 38274877103, 66702270961, 118587792977, 191765347193, 322687567459, 496811926949, 791004710821, 1171892726347, 1801152381623
Offset: 1
-
f[p_, e_] := (p^(9*e+9) - p^(9*e+4) + p^4 - 1)/(p^9-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 24] (* Amiram Eldar, May 25 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^4*sigma(d, 9));
-
a(n) = sumdiv(n, d, eulerphi(n/d)*(n/d)^8*sigma(d^2, 8)/sigma(d^2, 4));
A372950
a(n) = Sum_{1 <= x_1, x_2 <= n} ( n/gcd(x_1, x_2, n) )^3.
Original entry on oeis.org
1, 25, 217, 793, 3001, 5425, 16465, 25369, 52705, 75025, 159721, 172081, 369097, 411625, 651217, 811801, 1414945, 1317625, 2469241, 2379793, 3572905, 3993025, 6424177, 5505073, 9378001, 9227425, 12807289, 13056745, 20486761, 16280425, 28599361, 25977625, 34659457
Offset: 1
-
f[p_, e_] := (p^(5*e+5) - p^(5*e+3) + p^3 - 1)/(p^5-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
-
a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^3*sigma(d, 5));
A373129
a(n) = Sum_{1 <= x_1, x_2 <= n} sigma( n/gcd(x_1, x_2, n) ).
Original entry on oeis.org
1, 10, 33, 94, 145, 330, 385, 814, 969, 1450, 1441, 3102, 2353, 3850, 4785, 6766, 5185, 9690, 7201, 13630, 12705, 14410, 12673, 26862, 18745, 23530, 26889, 36190, 25201, 47850, 30721, 55150, 47553, 51850, 55825, 91086, 51985, 72010, 77649, 118030, 70561, 127050
Offset: 1
-
f[p_, e_] := (p^(3*e + 2)*(p+1) - p^(2*e)*(p^2+p+1) + p)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2024 *)
-
J(n, k) = sumdiv(n, d, d^k*moebius(n/d));
a(n, k=2, m=1) = sumdiv(n, d, J(d, k)*sigma(d^m));
Showing 1-7 of 7 results.