A000252
Number of invertible 2 X 2 matrices mod n.
Original entry on oeis.org
1, 6, 48, 96, 480, 288, 2016, 1536, 3888, 2880, 13200, 4608, 26208, 12096, 23040, 24576, 78336, 23328, 123120, 46080, 96768, 79200, 267168, 73728, 300000, 157248, 314928, 193536, 682080, 138240, 892800, 393216, 633600, 470016, 967680, 373248, 1822176, 738720
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, arXiv:math/0605185 [math.GR], 2006.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no 10, 917-923.
- J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29 , Iss. 1, 2005.
The order of GL_2(K) for a finite field K is in sequence
A059238.
-
Table[n*EulerPhi[n]*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}], {n, 21}] (* Jean-François Alcover, Apr 04 2011, after Vladeta Jovovic *)
-
a(n)=my(f=factor(n)[,1]); n^4*prod(i=1,#f, (1-1/f[i]^2)*(1-1/f[i])) \\ Charles R Greathouse IV, Feb 06 2017
-
from math import prod
from sympy import factorint
def A000252(n): return prod(p**((e<<2)-3)*(p*(p*(p-1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A000056
Order of the group SL(2,Z_n).
Original entry on oeis.org
1, 6, 24, 48, 120, 144, 336, 384, 648, 720, 1320, 1152, 2184, 2016, 2880, 3072, 4896, 3888, 6840, 5760, 8064, 7920, 12144, 9216, 15000, 13104, 17496, 16128, 24360, 17280, 29760, 24576, 31680, 29376, 40320, 31104, 50616, 41040, 52416, 46080, 68880, 48384, 79464
Offset: 1
G.f. = x + 6*x^2 + 24*x^3 + 48*x^4 + 120*x^5 + 144*x^6 + 336*x^7 +384*x^8 + ...
a(2) = 6 because [0, 1; 1, 0], [0, 1; 1, 1], [1, 0; 0, 1], [1, 0; 1, 1], [1, 1; 0, 1], [1, 1; 1, 0] are the six matrices modulo 2 with determinant 1 modulo 2.
- T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 46.
- B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 75.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
- Wikipedia, Congruence subgroup.
- Index to divisibility sequences
- Index entries for sequences related to groups
Cf.
A007434 ([SL_2(Z) : Gamma_1(n)]),
A001615 ([SL_2(Z) : Gamma_0(n)]).
-
proc(n) local b,d: b := n^3: for d from 1 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1-d^(-2)): fi: od: RETURN(b): end:
-
(* From Olivier Gérard, Aug 15 1997: (Start) *)
Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1-1/#2^2), #1 ]&, n^3, Range[ n ] ], {n, 1, 35} ]
Table[ n^3 Times@@(1-1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]^2), {n, 1, 35} ] (* End *)
a[ n_] := If[ n<1, 0, n Sum[ d^2 MoebiusMu[ n/d ], {d, Divisors @ n}]]; (* Michael Somos, Nov 15 2011 *)
Table[ n DirichletConvolve[ MoebiusMu[m], m^2, m, n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
a[n_] := #.RotateLeft[#] & @ Sort[Mod[ Outer[Times, Range[n], Range[n]], n] // Flatten // Tally][[;; , 2]]
Table[a[n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
-
{a(n) = if( n<1, 0, n * sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 05 2008 */
-
from math import prod
from sympy import factorint
def A000056(n): return prod((p+1)*(p-1)*p**(3*e-2) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A064767
Order of automorphism group of the group C_n X C_n X C_n (where C_n is the cyclic group of order n).
Original entry on oeis.org
1, 168, 11232, 86016, 1488000, 1886976, 33784128, 44040192, 221079456, 249984000, 2124276000, 966131712, 9726417792, 5675733504, 16713216000, 22548578304, 111203278848, 37141348608, 304812862560, 127991808000
Offset: 1
Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 24 2001
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, arXiv:math/0605185 [math.GR], 2006.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no 10, 917-923.
- J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29 , Iss. 1, 2005.
- Index entries for sequences related to groups.
-
a[n_] := n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]]; a[1] = 1; Array[a, 20] (* Jean-François Alcover, Mar 21 2017 *)
-
a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k))); \\ Michel Marcus, Jun 30 2015
-
a(n,f=factor(n))=prod(i=1,#f~, ((1 - 1/f[i,1]^3)*(1 - 1/f[i,1]^2)*(1 - 1/f[i,1])))*n^9 \\ Charles R Greathouse IV, Mar 04 2025
-
from math import prod
from sympy import factorint
def A064767(n): return prod(p**(3*(3*e-2))*(p*(p*(p**2*(p*(p-1)-1)+1)+1)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A316622
Array read by antidiagonals: T(n,k) is the order of the group GL(n,Z_k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 2, 48, 168, 1, 1, 4, 96, 11232, 20160, 1, 1, 2, 480, 86016, 24261120, 9999360, 1, 1, 6, 288, 1488000, 1321205760, 475566474240, 20158709760, 1, 1, 4, 2016, 1886976, 116064000000, 335522845163520, 84129611558952960, 163849992929280, 1
Offset: 0
Array begins:
=================================================================
n\k| 1 2 3 4 5 6
---+-------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 2 2 4 2 ...
2 | 1 6 48 96 480 288 ...
3 | 1 168 11232 86016 1488000 1886976 ...
4 | 1 20160 24261120 1321205760 116064000000 489104179200 ...
5 | 1 9999360 ...
...
-
T:=function(n,k) if k=1 or n=0 then return 1; else return Order(GL(n, Integers mod k)); fi; end;
for n in [0..5] do Print(List([1..6], k->T(n,k)), "\n"); od;
-
T[, 1] = T[0, ] = 1; T[n_, k_] := T[n, k] = Module[{f = FactorInteger[k], p, e}, If[Length[f] == 1, {p, e} = f[[1]]; (p^e)^(n^2)* Product[(1 - 1/p^j), {j, 1, n}], Times @@ (T[n, Power @@ #]& /@ f)]];
Table[T[n - k + 1, k], {n, 0, 8}, {k, n + 1, 1, -1}] // Flatten (* Jean-François Alcover, Jul 25 2019 *)
-
T(n,k)={my(f=factor(k)); k^(n^2) * prod(i=1, #f~, my(p=f[i,1]); prod(j=1, n, (1 - p^(-j))))}
A011785
Number of 3 X 3 matrices whose determinant is 1 mod n.
Original entry on oeis.org
1, 168, 5616, 43008, 372000, 943488, 5630688, 11010048, 36846576, 62496000, 212427600, 241532928, 810534816, 945955584, 2089152000, 2818572288, 6950204928, 6190224768, 16934047920, 15998976000, 31621943808, 35687836800
Offset: 1
Benjamin T. Love (benlove(AT)preston.polaristel.net)
-
a[n_] := (n^9*Times @@ Function[p, (1 - 1/p^3)*(1 - 1/p^2)*(1 - 1/p)] /@ FactorInteger[n][[All, 1]])/EulerPhi[n]; a[1] = 1; Array[a, 30] (* Jean-François Alcover, Mar 21 2017 *)
-
a(n) = n^9*prod(k=2, n, if (!isprime(k) || (n % k), 1, (1-1/k^3)*(1-1/k^2)*(1-1/k)))/eulerphi(n); \\ Michel Marcus, Jun 30 2015
-
from math import prod
from sympy import factorint
def A011785(n): return prod(p**((e<<3)-5)*(p**2*(p*(p-1)*(p+1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A011786
Number of 4 X 4 matrices whose determinant is 1 mod n.
Original entry on oeis.org
1, 20160, 12130560, 660602880, 29016000000, 244552089600, 4635182361600, 21646635171840, 174060277297920, 584962560000000, 4139330225184000, 8013482872012800, 50858076935877120, 93445276409856000, 351980328960000000, 709316941310853120, 2851903720876769280
Offset: 1
benlove(AT)preston.polaristel.net (Benjamin T. Love)
-
f[p_, e_] := (1 - 1/p^4)*(1 - 1/p^3)*(1 - 1/p^2); a[1] = 1; a[n_] := n^15 * Times @@ f @@@ FactorInteger[n]; Array[a, 17] (* Amiram Eldar, Oct 23 2022 *)
-
a(n) = f = factor(n); n^16/eulerphi(n) * prod(i=1, #f~, (1-1/f[i,1]^4)*(1-1/f[i,1]^3)*(1-1/f[i,1]^2)*(1-1/f[i,1])); \\ Michel Marcus, Sep 02 2013
-
from math import prod
from sympy import factorint
def A011786(n): return prod(p**(3*(5*e-3))*(p**2*(p*(p*(p*(p*(p*(p-1)*(p+1)-1)-1)+1)+1)+1)-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A294705
Order of the general symplectic group of 4 X 4 matrices over Z_n.
Original entry on oeis.org
1, 720, 103680, 1474560, 37440000, 74649600, 1659571200, 3019898880, 18366600960, 26956800000, 257213088000, 152882380800, 1644455554560, 1194891264000, 3881779200000, 6184752906240, 32143905423360, 13223952691200, 110052644025600, 55207526400000, 172064342016000, 185193423360000
Offset: 1
-
f[p_, e_] := p^(11*e - 7)*(p - 1)*(p^2 - 1)*(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Aug 07 2023 *)
-
def a(n):
return product([p^(11*n.valuation(p) - 7)*(p - 1)*(p^2 - 1)*(p^4 - 1)
for p in n.prime_factors()])
A364771
Order of the symplectic group of 4 X 4 matrices over Z_n.
Original entry on oeis.org
1, 720, 51840, 737280, 9360000, 37324800, 276595200, 754974720, 3061100160, 6739200000, 25721308800, 38220595200, 137037962880, 199148544000, 485222400000, 773094113280, 2008994088960, 2203992115200, 6114035779200, 6900940800000, 14338695168000, 18519342336000, 41348052472320
Offset: 1
- E. Artin, Geometric Algebra, Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988. Reprint of the 1957 original, A Wiley-Interscience Publication.
- Larry C. Grove, Classical Groups and Geometric Algebra, Grad. Stud. Math., 39 American Mathematical Society, Providence, RI, 2002. x+169 pp.
-
f[p_, e_] := p^(10*e - 6)*(p^2 - 1)*(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* Amiram Eldar, Aug 07 2023 *)
-
def a(n):
return product([p^(10*n.valuation(p)-6)*(p^2 - 1)*(p^4 - 1)
for p in n.prime_factors()])
Showing 1-8 of 8 results.
Comments