A000056
Order of the group SL(2,Z_n).
Original entry on oeis.org
1, 6, 24, 48, 120, 144, 336, 384, 648, 720, 1320, 1152, 2184, 2016, 2880, 3072, 4896, 3888, 6840, 5760, 8064, 7920, 12144, 9216, 15000, 13104, 17496, 16128, 24360, 17280, 29760, 24576, 31680, 29376, 40320, 31104, 50616, 41040, 52416, 46080, 68880, 48384, 79464
Offset: 1
G.f. = x + 6*x^2 + 24*x^3 + 48*x^4 + 120*x^5 + 144*x^6 + 336*x^7 +384*x^8 + ...
a(2) = 6 because [0, 1; 1, 0], [0, 1; 1, 1], [1, 0; 0, 1], [1, 0; 1, 1], [1, 1; 0, 1], [1, 1; 1, 0] are the six matrices modulo 2 with determinant 1 modulo 2.
- T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 46.
- B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 75.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
- Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
- Wikipedia, Congruence subgroup.
- Index to divisibility sequences
- Index entries for sequences related to groups
Cf.
A007434 ([SL_2(Z) : Gamma_1(n)]),
A001615 ([SL_2(Z) : Gamma_0(n)]).
-
proc(n) local b,d: b := n^3: for d from 1 to n do if irem(n,d) = 0 and isprime(d) then b := b*(1-d^(-2)): fi: od: RETURN(b): end:
-
(* From Olivier Gérard, Aug 15 1997: (Start) *)
Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1-1/#2^2), #1 ]&, n^3, Range[ n ] ], {n, 1, 35} ]
Table[ n^3 Times@@(1-1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]^2), {n, 1, 35} ] (* End *)
a[ n_] := If[ n<1, 0, n Sum[ d^2 MoebiusMu[ n/d ], {d, Divisors @ n}]]; (* Michael Somos, Nov 15 2011 *)
Table[ n DirichletConvolve[ MoebiusMu[m], m^2, m, n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
a[n_] := #.RotateLeft[#] & @ Sort[Mod[ Outer[Times, Range[n], Range[n]], n] // Flatten // Tally][[;; , 2]]
Table[a[n], {n, 1, 35}] (* Li Han, Mar 15 2020 *)
-
{a(n) = if( n<1, 0, n * sumdiv(n, d, d^2 * moebius(n / d)))}; /* Michael Somos, Mar 05 2008 */
-
from math import prod
from sympy import factorint
def A000056(n): return prod((p+1)*(p-1)*p**(3*e-2) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A316566
Triangle read by rows: T(n,k) is the number of elements of the group GL(2, Z(n)) with order k, 1 <= k <= A316565(n).
Original entry on oeis.org
1, 1, 3, 2, 1, 13, 8, 6, 0, 8, 0, 12, 1, 27, 8, 36, 0, 24, 1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80, 1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 1, 57, 170, 42, 0, 618, 48, 84, 0, 0, 0, 84
Offset: 1
Triangle begins:
1
1, 3, 2
1, 13, 8, 6, 0, 8, 0, 12
1, 27, 8, 36, 0, 24
1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80
1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24
...
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, my(t=MatOrder(M)); while(#L
A316537
Number of cyclic subgroups of the group SL(2, Z(n)), counting conjugates as distinct.
Original entry on oeis.org
1, 5, 13, 28, 49, 73, 116, 176, 202, 265, 378, 464, 550, 636, 842, 936, 1041, 1183, 1486, 1712, 2082, 2055, 2120, 3088, 2114, 3023, 2503, 4200, 4238, 4862, 4902, 4648, 6564, 5749, 7434, 7688, 6331, 8190, 9880, 11344, 10172, 12066, 9378, 13224, 14168, 11612
Offset: 1
Case n=2: generators of the 5 cyclic groups are:
[ 1 0 ] [0 1] [1 0] [1 1] [0 1]
[ 0 1 ] [1 0] [1 1] [0 1] [1 1]
-
Concatenation([1], List([2..10], n->Sum( Filtered( ConjugacyClassesSubgroups( SL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size)));
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, 1/eulerphi(MatOrder(M)))))))}
A316563
Maximum order of an element in the special linear group SL(2, Z(n)).
Original entry on oeis.org
1, 3, 6, 6, 10, 12, 14, 8, 18, 30, 22, 12, 26, 42, 30, 16, 34, 18, 38, 30, 42, 66, 46, 24, 50, 78, 54, 42, 58, 60, 62, 32, 66, 102, 70, 36, 74, 114, 78, 40, 82, 84, 86, 66, 90, 138, 94, 48, 98, 150, 102, 78, 106, 54, 110, 56, 114, 174, 118, 60, 122, 186, 126
Offset: 1
-
Concatenation([1], List([2..15], n->Maximum(List(SL(2, Integers mod n), Order))));
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, m=max(m, MatOrder(M))))))); m}
A316553
Number of elements of order 2 in the group SL(2, Z(n)).
Original entry on oeis.org
0, 3, 1, 7, 1, 7, 1, 15, 1, 7, 1, 15, 1, 7, 3, 15, 1, 7, 1, 15, 3, 7, 1, 31, 1, 7, 1, 15, 1, 15, 1, 15, 3, 7, 3, 15, 1, 7, 3, 31, 1, 15, 1, 15, 3, 7, 1, 31, 1, 7, 3, 15, 1, 7, 3, 31, 3, 7, 1, 31, 1, 7, 3, 15, 3, 15, 1, 15, 3, 15, 1, 31, 1, 7, 3, 15, 3, 15, 1
Offset: 1
Case n=2: the three 2 X 2 matrices on Z(2) having determinant 1 and order 2 are:
[ 0 1 ] [ 1 0 ] [ 1 1 ]
[ 1 0 ] [ 1 1 ] [ 0 1 ]
-
Concatenation([0], List([2..10], n->Sum(Filtered( ConjugacyClassesSubgroups( SL(2, Integers mod n)), x->Order( Representative(x))=2 and IsCyclic( Representative(x))), Size)));
-
a(n)={my(id=matid(2)); sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, M^2==id))))) - 1}
-
memoA316553 = Map(); \\ Only values at 2^k are actually collected here.
A316553slow_memoized(n) = if(1==n, 0, if((n%2)&&isprimepower(n), 1, my(id=matid(2), v); if(mapisdefined(memoA316553,n,&v), v, v = (sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, M^2==id))))) - 1); mapput(memoA316553,n,v); (v))));
A316553(n) = if(1==n,0,my(f=factor(n)); -1 + prod(i=1,#f~,1+A316553slow_memoized(f[i,1]^f[i,2]))); \\ (Based on Robert Israel's multiplicativity rule) - Antti Karttunen, Dec 05 2021
A316586
Array read by antidiagonals: T(n,k) is the number of elements x in SL(2,Z_n) with x^k == I mod n where I is the identity matrix.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 3, 2, 1, 1, 4, 9, 8, 1, 1, 1, 8, 9, 2, 1, 1, 6, 1, 32, 21, 8, 1, 1, 1, 18, 1, 32, 27, 2, 1, 1, 4, 1, 24, 25, 32, 57, 16, 1, 1, 3, 8, 1, 42, 1, 44, 33, 2, 1, 1, 4, 9, 32, 1, 108, 1, 160, 99, 8, 1, 1, 1, 2, 9, 32, 1, 114, 1, 56, 63, 2, 1
Offset: 1
Array begins:
================================================
n\k | 1 2 3 4 5 6 7 8 9 10
------+-----------------------------------------
1 | 1 1 1 1 1 1 1 1 1 1 ...
2 | 1 4 3 4 1 6 1 4 3 4 ...
3 | 1 2 9 8 1 18 1 8 9 2 ...
4 | 1 8 9 32 1 24 1 32 9 8 ...
5 | 1 2 21 32 25 42 1 32 21 50 ...
6 | 1 8 27 32 1 108 1 32 27 8 ...
7 | 1 2 57 44 1 114 49 128 57 2 ...
8 | 1 16 33 160 1 144 1 256 33 16 ...
9 | 1 2 99 56 1 198 1 56 243 2 ...
10 | 1 8 63 128 25 252 1 128 63 200 ...
11 | 1 2 111 112 265 222 1 112 111 530 ...
12 | 1 16 81 256 1 432 1 256 81 16 ...
13 | 1 2 183 184 1 366 469 184 183 2 ...
14 | 1 8 171 176 1 684 49 512 171 8 ...
15 | 1 4 189 256 25 756 1 256 189 100 ...
...
Showing 1-6 of 6 results.
Comments