A316564
Triangle read by rows: T(n,k) is the number of elements of the group SL(2, Z(n)) with order k, 1 <= k <= A316563(n).
Original entry on oeis.org
1, 1, 3, 2, 1, 1, 8, 6, 0, 8, 1, 7, 8, 24, 0, 8, 1, 1, 20, 30, 24, 20, 0, 0, 0, 24, 1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12, 1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48, 1, 15, 32, 144, 0, 96, 0, 96, 1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144
Offset: 1
Triangle begins:
1;
1, 3, 2;
1, 1, 8, 6, 0, 8;
1, 7, 8, 24, 0, 8;
1, 1, 20, 30, 24, 20, 0, 0, 0, 24;
1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12;
1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48;
1, 15, 32, 144, 0, 96, 0, 96;
1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144;
...
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, my(t=MatOrder(M)); while(#L
A316537
Number of cyclic subgroups of the group SL(2, Z(n)), counting conjugates as distinct.
Original entry on oeis.org
1, 5, 13, 28, 49, 73, 116, 176, 202, 265, 378, 464, 550, 636, 842, 936, 1041, 1183, 1486, 1712, 2082, 2055, 2120, 3088, 2114, 3023, 2503, 4200, 4238, 4862, 4902, 4648, 6564, 5749, 7434, 7688, 6331, 8190, 9880, 11344, 10172, 12066, 9378, 13224, 14168, 11612
Offset: 1
Case n=2: generators of the 5 cyclic groups are:
[ 1 0 ] [0 1] [1 0] [1 1] [0 1]
[ 0 1 ] [1 0] [1 1] [0 1] [1 1]
-
Concatenation([1], List([2..10], n->Sum( Filtered( ConjugacyClassesSubgroups( SL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size)));
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, 1/eulerphi(MatOrder(M)))))))}
A316565
Maximum order of an element of the general linear group GL(2, Z(n)).
Original entry on oeis.org
1, 3, 8, 6, 24, 24, 48, 12, 24, 60, 120, 24, 168, 48, 60, 24, 288, 24, 360, 60, 168, 330, 528, 24, 120, 168, 72, 84, 840, 120, 960, 48, 440, 816, 420, 36, 1368, 360, 312, 60, 1680, 168, 1848, 330, 180, 1518, 2208, 48, 336, 300, 816, 168, 2808, 72, 1320, 168
Offset: 1
-
Concatenation([1], List([2..10], n->Maximum(List(GL(2, Integers mod n), Order))));
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, m=max(m, MatOrder(M))))))); m}
A327569
Exponent of the group SL(2, Z_n).
Original entry on oeis.org
1, 6, 12, 12, 60, 12, 168, 24, 36, 60, 660, 12, 1092, 168, 60, 48, 2448, 36, 3420, 60, 168, 660, 6072, 24, 300, 1092, 108, 168, 12180, 60, 14880, 96, 660, 2448, 840, 36, 25308, 3420, 1092, 120, 34440, 168, 39732, 660, 180, 6072, 51888, 48, 1176, 300, 2448, 1092, 74412, 108, 660, 168
Offset: 1
SL(2, Z_2) is isomorphic to S_3, which has 1 identity element, 3 elements with order 2 and 2 elements with order 3, so a(2) = lcm(1, 2, 3) = 6.
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++; N=N*M); k}
a(n)={my(m=1); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, m=lcm(m, MatOrder(M))))))); m} \\ Following Andrew Howroyd's program for A316563
Showing 1-4 of 4 results.
Comments