cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A316564 Triangle read by rows: T(n,k) is the number of elements of the group SL(2, Z(n)) with order k, 1 <= k <= A316563(n).

Original entry on oeis.org

1, 1, 3, 2, 1, 1, 8, 6, 0, 8, 1, 7, 8, 24, 0, 8, 1, 1, 20, 30, 24, 20, 0, 0, 0, 24, 1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12, 1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48, 1, 15, 32, 144, 0, 96, 0, 96, 1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Comments

For coprime p,q the group SL(p*q, Z(n)) is isomorphic to the direct product of the two groups SL(p, Z(n)) and SL(q, Z(n)).

Examples

			Triangle begins:
  1;
  1,  3,  2;
  1,  1,  8, 6, 0, 8;
  1,  7,  8, 24, 0, 8;
  1,  1, 20, 30, 24, 20, 0, 0, 0, 24;
  1,  7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12;
  1,  1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48;
  1, 15, 32, 144, 0, 96, 0, 96;
  1,  1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144;
  ...
		

Crossrefs

Column 2 is A316553.
Row sums are A000056.

Programs

  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, my(t=MatOrder(M)); while(#L
    				

Formula

T(p*q,k) = Sum_{i>0, j>0, k=lcm(i, j)} T(p, i)*T(q, j) for gcd(p, q)=1.
T(n,k) = Sum_{d|k} mu(d/k) A316586(n,d).

A316563 Maximum order of an element in the special linear group SL(2, Z(n)).

Original entry on oeis.org

1, 3, 6, 6, 10, 12, 14, 8, 18, 30, 22, 12, 26, 42, 30, 16, 34, 18, 38, 30, 42, 66, 46, 24, 50, 78, 54, 42, 58, 60, 62, 32, 66, 102, 70, 36, 74, 114, 78, 40, 82, 84, 86, 66, 90, 138, 94, 48, 98, 150, 102, 78, 106, 54, 110, 56, 114, 174, 118, 60, 122, 186, 126
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Crossrefs

Row lengths of A316564.

Programs

  • GAP
    Concatenation([1], List([2..15], n->Maximum(List(SL(2, Integers mod n), Order))));
    
  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, m=max(m, MatOrder(M))))))); m}

A316553 Number of elements of order 2 in the group SL(2, Z(n)).

Original entry on oeis.org

0, 3, 1, 7, 1, 7, 1, 15, 1, 7, 1, 15, 1, 7, 3, 15, 1, 7, 1, 15, 3, 7, 1, 31, 1, 7, 1, 15, 1, 15, 1, 15, 3, 7, 3, 15, 1, 7, 3, 31, 1, 15, 1, 15, 3, 7, 1, 31, 1, 7, 3, 15, 1, 7, 3, 31, 3, 7, 1, 31, 1, 7, 3, 15, 3, 15, 1, 15, 3, 15, 1, 31, 1, 7, 3, 15, 3, 15, 1
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Comments

Equivalently, the number of cyclic subgroups of the group SL(2, Z(n)) having order 2, counting conjugates as distinct.

Examples

			Case n=2: the three 2 X 2 matrices on Z(2) having determinant 1 and order 2 are:
  [ 0 1 ]   [ 1 0 ]   [ 1 1 ]
  [ 1 0 ]   [ 1 1 ]   [ 0 1 ]
		

Crossrefs

Column 2 of A316564.
Cf. A061345.

Programs

  • GAP
    Concatenation([0], List([2..10], n->Sum(Filtered( ConjugacyClassesSubgroups( SL(2, Integers mod n)), x->Order( Representative(x))=2 and IsCyclic( Representative(x))), Size)));
    
  • PARI
    a(n)={my(id=matid(2)); sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, M^2==id))))) - 1}
    
  • PARI
    memoA316553 = Map(); \\ Only values at 2^k are actually collected here.
    A316553slow_memoized(n) = if(1==n, 0, if((n%2)&&isprimepower(n), 1, my(id=matid(2), v); if(mapisdefined(memoA316553,n,&v), v, v = (sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, M^2==id))))) - 1); mapput(memoA316553,n,v); (v))));
    A316553(n) = if(1==n,0,my(f=factor(n)); -1 + prod(i=1,#f~,1+A316553slow_memoized(f[i,1]^f[i,2]))); \\ (Based on Robert Israel's multiplicativity rule) - Antti Karttunen, Dec 05 2021

Formula

Conjecture: a(n) = 2^(omega(n) + min(3, valuation(n, 2))) - 1.
From Robert Israel, Jun 15 2020: (Start)
Number of solutions mod n, other than t[1]=t[4]=1,t[2]=t[3]=0, of the equations t[2]*(t[1] + t[4])=0, t[3]*(t[1] + t[4])=0, t[1]^2 + t[2]*t[3] = 1, t[2]*t[3] + t[4]^2 = 1, t[1]*t[4] - t[2]*t[3] = 1.
If m and n are coprime, a(m*n) = a(m)*a(n)+a(m)+a(n) (i.e. a(n)+1 is multiplicative).
If n > 1 is in A061345, a(n)=1. (End)

A316560 Number of cyclic subgroups of the group GL(2, Z(n)), counting conjugates as distinct.

Original entry on oeis.org

1, 5, 28, 62, 176, 148, 610, 696, 1252, 920, 2296, 1972, 4874, 3523, 6040, 6320, 8136, 7348, 14984, 13568, 22124, 11920, 17396, 23952, 29846, 28172, 38044, 47656, 47282, 32908, 75036, 53520, 71768, 42312, 145852, 99892, 123524, 88456, 187036, 179200, 152290
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([2..7], n->Sum( Filtered( ConjugacyClassesSubgroups( GL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size)));
    
  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, 1/eulerphi(MatOrder(M)))))))}

Formula

a(n) = Sum_{k=1..A316565(n)} 1/phi(A316566(n,k)).

A316536 Number of abelian subgroups of the group SL(2, Z(n)), counting conjugates as distinct.

Original entry on oeis.org

1, 5, 13, 42, 49, 105, 116, 498, 254, 381, 378, 1402, 550, 929, 1383, 3110, 1041, 2530, 1486, 5386, 3512, 2952, 2120, 24770
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([2..10], n->Sum( Filtered( ConjugacyClassesSubgroups( SL(2, Integers mod n)), x->IsAbelian( Representative(x))), Size)));
Showing 1-5 of 5 results.