cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A316564 Triangle read by rows: T(n,k) is the number of elements of the group SL(2, Z(n)) with order k, 1 <= k <= A316563(n).

Original entry on oeis.org

1, 1, 3, 2, 1, 1, 8, 6, 0, 8, 1, 7, 8, 24, 0, 8, 1, 1, 20, 30, 24, 20, 0, 0, 0, 24, 1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12, 1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48, 1, 15, 32, 144, 0, 96, 0, 96, 1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Comments

For coprime p,q the group SL(p*q, Z(n)) is isomorphic to the direct product of the two groups SL(p, Z(n)) and SL(q, Z(n)).

Examples

			Triangle begins:
  1;
  1,  3,  2;
  1,  1,  8, 6, 0, 8;
  1,  7,  8, 24, 0, 8;
  1,  1, 20, 30, 24, 20, 0, 0, 0, 24;
  1,  7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12;
  1,  1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48;
  1, 15, 32, 144, 0, 96, 0, 96;
  1,  1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144;
  ...
		

Crossrefs

Column 2 is A316553.
Row sums are A000056.

Programs

  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, my(t=MatOrder(M)); while(#L
    				

Formula

T(p*q,k) = Sum_{i>0, j>0, k=lcm(i, j)} T(p, i)*T(q, j) for gcd(p, q)=1.
T(n,k) = Sum_{d|k} mu(d/k) A316586(n,d).

A316537 Number of cyclic subgroups of the group SL(2, Z(n)), counting conjugates as distinct.

Original entry on oeis.org

1, 5, 13, 28, 49, 73, 116, 176, 202, 265, 378, 464, 550, 636, 842, 936, 1041, 1183, 1486, 1712, 2082, 2055, 2120, 3088, 2114, 3023, 2503, 4200, 4238, 4862, 4902, 4648, 6564, 5749, 7434, 7688, 6331, 8190, 9880, 11344, 10172, 12066, 9378, 13224, 14168, 11612
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Examples

			Case n=2: generators of the 5 cyclic groups are:
  [ 1 0 ]   [0 1]   [1 0]   [1 1]   [0 1]
  [ 0 1 ]   [1 0]   [1 1]   [0 1]   [1 1]
		

Crossrefs

Programs

  • GAP
    Concatenation([1], List([2..10], n->Sum( Filtered( ConjugacyClassesSubgroups( SL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size)));
    
  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, 1/eulerphi(MatOrder(M)))))))}

Formula

a(n) = Sum_{k=1..A316563(n)} 1/phi(A316564(n, k)).
Showing 1-2 of 2 results.