A316564 Triangle read by rows: T(n,k) is the number of elements of the group SL(2, Z(n)) with order k, 1 <= k <= A316563(n).
1, 1, 3, 2, 1, 1, 8, 6, 0, 8, 1, 7, 8, 24, 0, 8, 1, 1, 20, 30, 24, 20, 0, 0, 0, 24, 1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12, 1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48, 1, 15, 32, 144, 0, 96, 0, 96, 1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144
Offset: 1
Examples
Triangle begins: 1; 1, 3, 2; 1, 1, 8, 6, 0, 8; 1, 7, 8, 24, 0, 8; 1, 1, 20, 30, 24, 20, 0, 0, 0, 24; 1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12; 1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48; 1, 15, 32, 144, 0, 96, 0, 96; 1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..3478 (first 60 rows)
Programs
-
PARI
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k} row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, my(t=MatOrder(M)); while(#L
Formula
T(p*q,k) = Sum_{i>0, j>0, k=lcm(i, j)} T(p, i)*T(q, j) for gcd(p, q)=1.
T(n,k) = Sum_{d|k} mu(d/k) A316586(n,d).
Comments