cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A316566 Triangle read by rows: T(n,k) is the number of elements of the group GL(2, Z(n)) with order k, 1 <= k <= A316565(n).

Original entry on oeis.org

1, 1, 3, 2, 1, 13, 8, 6, 0, 8, 0, 12, 1, 27, 8, 36, 0, 24, 1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80, 1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 1, 57, 170, 42, 0, 618, 48, 84, 0, 0, 0, 84
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Comments

For coprime p,q the group GL(p*q, Z(n)) is isomorphic to the direct product of the two groups GL(p, Z(n)) and GL(q, Z(n)).

Examples

			Triangle begins:
  1
  1, 3, 2
  1, 13, 8, 6, 0, 8, 0, 12
  1, 27, 8, 36, 0, 24
  1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80
  1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24
  ...
		

Crossrefs

Row sums are A000252.
Column 2 is A066947.

Programs

  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, my(t=MatOrder(M)); while(#L
    				

Formula

T(p*q,k) = Sum_{i>0, j>0, k=lcm(i, j)} T(p, i)*T(q, j) for gcd(p, q)=1.
T(n,k) = Sum_{d|k} mu(d/k) * A316584(n,k).

A316586 Array read by antidiagonals: T(n,k) is the number of elements x in SL(2,Z_n) with x^k == I mod n where I is the identity matrix.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 3, 2, 1, 1, 4, 9, 8, 1, 1, 1, 8, 9, 2, 1, 1, 6, 1, 32, 21, 8, 1, 1, 1, 18, 1, 32, 27, 2, 1, 1, 4, 1, 24, 25, 32, 57, 16, 1, 1, 3, 8, 1, 42, 1, 44, 33, 2, 1, 1, 4, 9, 32, 1, 108, 1, 160, 99, 8, 1, 1, 1, 2, 9, 32, 1, 114, 1, 56, 63, 2, 1
Offset: 1

Views

Author

Andrew Howroyd, Jul 07 2018

Keywords

Comments

All columns are multiplicative.

Examples

			Array begins:
================================================
  n\k | 1  2   3   4   5   6   7   8   9  10
------+-----------------------------------------
    1 | 1  1   1   1   1   1   1   1   1   1 ...
    2 | 1  4   3   4   1   6   1   4   3   4 ...
    3 | 1  2   9   8   1  18   1   8   9   2 ...
    4 | 1  8   9  32   1  24   1  32   9   8 ...
    5 | 1  2  21  32  25  42   1  32  21  50 ...
    6 | 1  8  27  32   1 108   1  32  27   8 ...
    7 | 1  2  57  44   1 114  49 128  57   2 ...
    8 | 1 16  33 160   1 144   1 256  33  16 ...
    9 | 1  2  99  56   1 198   1  56 243   2 ...
   10 | 1  8  63 128  25 252   1 128  63 200 ...
   11 | 1  2 111 112 265 222   1 112 111 530 ...
   12 | 1 16  81 256   1 432   1 256  81  16 ...
   13 | 1  2 183 184   1 366 469 184 183   2 ...
   14 | 1  8 171 176   1 684  49 512 171   8 ...
   15 | 1  4 189 256  25 756   1 256 189 100 ...
   ...
		

Crossrefs

Formula

T(n,k) = Sum_{d|k} A316564(n, d).
Conjecture: T(p,p) = p^2 for p prime.
Showing 1-2 of 2 results.