A000252
Number of invertible 2 X 2 matrices mod n.
Original entry on oeis.org
1, 6, 48, 96, 480, 288, 2016, 1536, 3888, 2880, 13200, 4608, 26208, 12096, 23040, 24576, 78336, 23328, 123120, 46080, 96768, 79200, 267168, 73728, 300000, 157248, 314928, 193536, 682080, 138240, 892800, 393216, 633600, 470016, 967680, 373248, 1822176, 738720
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, arXiv:math/0605185 [math.GR], 2006.
- C. J. Hillar and D. L. Rhea, Automorphisms of finite abelian groups, Amer. Math. Monthly 114 (2007), no 10, 917-923.
- J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher, Cryptologia, Vol. 29 , Iss. 1, 2005.
The order of GL_2(K) for a finite field K is in sequence
A059238.
-
Table[n*EulerPhi[n]*Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}], {n, 21}] (* Jean-François Alcover, Apr 04 2011, after Vladeta Jovovic *)
-
a(n)=my(f=factor(n)[,1]); n^4*prod(i=1,#f, (1-1/f[i]^2)*(1-1/f[i])) \\ Charles R Greathouse IV, Feb 06 2017
-
from math import prod
from sympy import factorint
def A000252(n): return prod(p**((e<<2)-3)*(p*(p*(p-1)-1)+1) for p,e in factorint(n).items()) # Chai Wah Wu, Mar 04 2025
A316564
Triangle read by rows: T(n,k) is the number of elements of the group SL(2, Z(n)) with order k, 1 <= k <= A316563(n).
Original entry on oeis.org
1, 1, 3, 2, 1, 1, 8, 6, 0, 8, 1, 7, 8, 24, 0, 8, 1, 1, 20, 30, 24, 20, 0, 0, 0, 24, 1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12, 1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48, 1, 15, 32, 144, 0, 96, 0, 96, 1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144
Offset: 1
Triangle begins:
1;
1, 3, 2;
1, 1, 8, 6, 0, 8;
1, 7, 8, 24, 0, 8;
1, 1, 20, 30, 24, 20, 0, 0, 0, 24;
1, 7, 26, 24, 0, 74, 0, 0, 0, 0, 0, 12;
1, 1, 56, 42, 0, 56, 48, 84, 0, 0, 0, 0, 0, 48;
1, 15, 32, 144, 0, 96, 0, 96;
1, 1, 98, 54, 0, 98, 0, 0, 144, 0, 0, 108, 0, 0, 0, 0, 0, 144;
...
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, my(t=MatOrder(M)); while(#L
A066947
Number of elements of order 2 in GL(2,Z_n).
Original entry on oeis.org
3, 13, 27, 31, 55, 57, 175, 109, 127, 133, 391, 183, 231, 447, 607, 307, 439, 381, 895, 811, 535, 553, 2463, 751, 735, 973, 1623, 871, 1791, 993, 2335, 1875, 1231, 1855, 3079, 1407, 1527, 2575, 5631, 1723, 3247, 1893, 3751, 3519, 2215, 2257, 8511, 2745
Offset: 2
Alec Mihailovs (alec(AT)mihailovs.com), Jan 24 2002 and Mar 24 2002
a(3000) = (a(8)+1)*(a(3)+1)*(a(125)+1)-1 = (9*4^2 + 2)*(3^2 + 3 + 2)*(5^6 + 5^5 + 2) - 1 = 46204927 because 3000 = 2^3*3*5^3.
-
Ord2inGL2 := proc(n::posint) local i,j,m,c; if n=1 then return 0 end if; m := ifactors(n)[2]; c := 1; j := 1; if (m[1,1]=2) then j := 2; if m[1,2]=1 then c := 4 elif m[1,2]=2 then c := 28 else c := 9*4^(m[1,2]-1)+32 end if end if; c := c*mul((m[i,1]+1)*m[i,1]^(2*m[i,2]-1)+2,i=j..nops(m))-1 end;
-
a[n_] := (c[0] = 1; c[1] = 4; c[2] = 28; c[k_] := 9*4^(k-1) + 32; fi = FactorInteger[n]; m = (s = Cases[fi, {2, _}]; If[s == {}, 0, s[[1, 2]]]); p = If[m == 0, fi, Rest[fi]]; p1 = p[[All, 1]]; p2 = p[[All, 2]]; c[m]*Times @@ (p1^(2p2) + p1^(2p2-1) + 2) - 1);
(* Jean-François Alcover, May 19 2011, after Maple prog. *)
-
a(n)=my(o=valuation(n,2),f=factor(n>>o)); prod(i=1,#f[,1],f[i,1]^(2*f[i,2])+f[i,1]^(2*f[i,2]-1)+2)*if(o, if(o>1, if(o>2, 9*4^(o-1)+32,28),4),1)-1 \\ Charles R Greathouse IV, May 29 2013
A316565
Maximum order of an element of the general linear group GL(2, Z(n)).
Original entry on oeis.org
1, 3, 8, 6, 24, 24, 48, 12, 24, 60, 120, 24, 168, 48, 60, 24, 288, 24, 360, 60, 168, 330, 528, 24, 120, 168, 72, 84, 840, 120, 960, 48, 440, 816, 420, 36, 1368, 360, 312, 60, 1680, 168, 1848, 330, 180, 1518, 2208, 48, 336, 300, 816, 168, 2808, 72, 1320, 168
Offset: 1
-
Concatenation([1], List([2..10], n->Maximum(List(GL(2, Integers mod n), Order))));
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, m=max(m, MatOrder(M))))))); m}
A316560
Number of cyclic subgroups of the group GL(2, Z(n)), counting conjugates as distinct.
Original entry on oeis.org
1, 5, 28, 62, 176, 148, 610, 696, 1252, 920, 2296, 1972, 4874, 3523, 6040, 6320, 8136, 7348, 14984, 13568, 22124, 11920, 17396, 23952, 29846, 28172, 38044, 47656, 47282, 32908, 75036, 53520, 71768, 42312, 145852, 99892, 123524, 88456, 187036, 179200, 152290
Offset: 1
-
Concatenation([1], List([2..7], n->Sum( Filtered( ConjugacyClassesSubgroups( GL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size)));
-
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, 1/eulerphi(MatOrder(M)))))))}
A316584
Array read by antidiagonals: T(n,k) is the number of elements x in GL(2,Z_n) with x^k == I mod n where I is the identity matrix.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 3, 14, 1, 1, 4, 9, 28, 1, 1, 1, 20, 9, 32, 1, 1, 6, 1, 64, 21, 56, 1, 1, 1, 30, 1, 184, 27, 58, 1, 1, 4, 1, 60, 25, 80, 171, 176, 1, 1, 3, 32, 1, 72, 1, 100, 33, 110, 1, 1, 4, 9, 64, 1, 180, 1, 640, 297, 128, 1, 1, 1, 14, 9, 224, 1, 846, 1, 164, 63, 134, 1
Offset: 1
Array begins:
======================================================
n\k | 1 2 3 4 5 6 7 8 9 10
------+-----------------------------------------------
1 | 1 1 1 1 1 1 1 1 1 1 ...
2 | 1 4 3 4 1 6 1 4 3 4 ...
3 | 1 14 9 20 1 30 1 32 9 14 ...
4 | 1 28 9 64 1 60 1 64 9 28 ...
5 | 1 32 21 184 25 72 1 224 21 80 ...
6 | 1 56 27 80 1 180 1 128 27 56 ...
7 | 1 58 171 100 1 846 49 184 171 58 ...
8 | 1 176 33 640 1 432 1 1024 33 176 ...
9 | 1 110 297 164 1 1566 1 272 729 110 ...
10 | 1 128 63 736 25 432 1 896 63 320 ...
11 | 1 134 111 244 1325 354 1 464 111 5950 ...
12 | 1 392 81 1280 1 1800 1 2048 81 392 ...
13 | 1 184 549 1096 1 2736 469 1408 549 184 ...
14 | 1 232 513 400 1 5076 49 736 513 232 ...
15 | 1 448 189 3680 25 2160 1 7168 189 1120 ...
...
A086147
Sum of the orders of the elements in the group GL(2,Z_n).
Original entry on oeis.org
1, 13, 219, 367, 4891, 1977, 36085, 9791, 46731, 39133, 479157, 37119, 1289911, 243703, 375219, 305599, 6991319, 299913, 11500123, 667219, 2610657, 3723423, 40035651, 781127, 14928331, 8544673, 11297307, 4540153, 129539703, 2739477, 209881105, 9748415
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 25 2003
-
A086147 := n -> Sum(ConjugacyClasses(GL(2,ZmodnZ(n))), cc->Size(cc) * Order(Representative(cc))); # Eric M. Schmidt, May 18 2013
A229292
Exponent of the group of 2 X 2 invertible matrices over Z/nZ.
Original entry on oeis.org
1, 6, 24, 30, 120, 24, 336, 126, 240, 120, 1320, 120, 2184, 336, 120, 510, 4896, 240, 6840, 120, 336, 1320, 12144, 504, 3120, 2184, 2184, 1680, 24360, 120, 29760, 2046, 1320, 4896, 1680, 240, 50616, 6840, 2184, 2520, 68880, 336, 79464, 1320, 240, 12144
Offset: 1
-
ex[p_, s_] := LCM[p(p^(2 s) - 1), p - 1]; ex[1] := 1; ex[n_] := {aux = 1; Do[aux = LCM[aux, ex[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length[fa[n]]}]; aux}[[1]];Table[ex[n], {n, 1, 111}]
-
a(n)=if(n==1,return(1)); my(f=factor(n)); lcm(vector(#f~,i, f[i,1]*lcm((f[i,1]^(2*f[i,2])-1), f[i,1]-1))) \\ Charles R Greathouse IV, Nov 13 2013
Showing 1-8 of 8 results.
Comments