cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A316566 Triangle read by rows: T(n,k) is the number of elements of the group GL(2, Z(n)) with order k, 1 <= k <= A316565(n).

Original entry on oeis.org

1, 1, 3, 2, 1, 13, 8, 6, 0, 8, 0, 12, 1, 27, 8, 36, 0, 24, 1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80, 1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 1, 57, 170, 42, 0, 618, 48, 84, 0, 0, 0, 84
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Comments

For coprime p,q the group GL(p*q, Z(n)) is isomorphic to the direct product of the two groups GL(p, Z(n)) and GL(q, Z(n)).

Examples

			Triangle begins:
  1
  1, 3, 2
  1, 13, 8, 6, 0, 8, 0, 12
  1, 27, 8, 36, 0, 24
  1, 31, 20, 152, 24, 20, 0, 40, 0, 24, 0, 40, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 80
  1, 55, 26, 24, 0, 98, 0, 48, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24
  ...
		

Crossrefs

Row sums are A000252.
Column 2 is A066947.

Programs

  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    row(n)={my(L=List()); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, my(t=MatOrder(M)); while(#L
    				

Formula

T(p*q,k) = Sum_{i>0, j>0, k=lcm(i, j)} T(p, i)*T(q, j) for gcd(p, q)=1.
T(n,k) = Sum_{d|k} mu(d/k) * A316584(n,k).

A066907 Number of elements in GL(2,Z_n) x with x^2 == I mod n where I is the identity matrix.

Original entry on oeis.org

1, 4, 14, 28, 32, 56, 58, 176, 110, 128, 134, 392, 184, 232, 448, 608, 308, 440, 382, 896, 812, 536, 554, 2464, 752, 736, 974, 1624, 872, 1792, 994, 2336, 1876, 1232, 1856, 3080, 1408, 1528, 2576, 5632, 1724, 3248, 1894, 3752, 3520, 2216, 2258, 8512, 2746
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), Jan 26 2002

Keywords

Comments

Number of involutory matrices mod n. - Charles R Greathouse IV, May 29 2013

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e-1)*(p+1) + 2; f[2, e_] := 9*4^(e-1)+32; f[2, 1] = 4; f[2, 2] = 28; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 02 2023 *)
  • PARI
    a(n)=my(o=valuation(n,2),f=factor(n>>o)); prod(i=1,#f[,1],f[i,1]^(2*f[i,2])+f[i,1]^(2*f[i,2]-1)+2)*if(o, if(o>1, if(o>2, 9*4^(o-1)+32,28),4),1) \\ Charles R Greathouse IV, May 29 2013

Formula

a(n) = A066947(n) + 1.
a(n) is multiplicative and for an odd prime power p^k : a(p^k) = 2 + p^(2k-1)(p+1). [corrected by Felix A. Pahl, Mar 08 2013]
From Amiram Eldar, Nov 03 2023: (Start)
Dirichlet g.f.: ((1+1/2^s+7/2^(2*s-1)+5/2^(3*s-4))/(1+5/2^s)) * (zeta(s)*zeta(s-2)/zeta(s-1)) * Product_{p prime} (1 + 2/p^(s-1) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (4*zeta(3)/13) * Product_{p prime} (1 + 1/p^2 + 1/p^3 - 2/p^4 - 1/p^5) = 0.55646002711570137209... . (End)

Extensions

Added more terms (from A066947), Joerg Arndt, Mar 08 2013

A316560 Number of cyclic subgroups of the group GL(2, Z(n)), counting conjugates as distinct.

Original entry on oeis.org

1, 5, 28, 62, 176, 148, 610, 696, 1252, 920, 2296, 1972, 4874, 3523, 6040, 6320, 8136, 7348, 14984, 13568, 22124, 11920, 17396, 23952, 29846, 28172, 38044, 47656, 47282, 32908, 75036, 53520, 71768, 42312, 145852, 99892, 123524, 88456, 187036, 179200, 152290
Offset: 1

Views

Author

Andrew Howroyd, Jul 06 2018

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1], List([2..7], n->Sum( Filtered( ConjugacyClassesSubgroups( GL(2, Integers mod n)), x->IsCyclic( Representative(x))), Size)));
    
  • PARI
    MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k}
    a(n)={sum(a=0, n-1, sum(b=0, n-1, sum(c=0, n-1, sum(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(gcd(lift(matdet(M)), n)==1, 1/eulerphi(MatOrder(M)))))))}

Formula

a(n) = Sum_{k=1..A316565(n)} 1/phi(A316566(n,k)).
Showing 1-3 of 3 results.