cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A076485 Solutions to gcd(sigma(x), phi(x)) > gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) > A066086(x) or if A066087(x) > 0.

Original entry on oeis.org

12, 18, 24, 44, 48, 49, 54, 56, 72, 88, 92, 96, 99, 108, 112, 116, 125, 132, 135, 140, 147, 152, 162, 168, 169, 172, 176, 184, 188, 192, 196, 198, 200, 207, 216, 224, 236, 248, 250, 264, 270, 276, 280, 284, 288, 297, 308, 328, 332, 336, 344, 348, 352, 361
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Examples

			For n=12: sigma(12)=28, phi(12)=4, gcd(28,4)=4 core(12)=6, sigma(6)=12, phi(6)=2, gcd(12,2)=2.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Greater[s1, s2], Print[n]], {n, 1, 256}]

A076486 Solutions to gcd(sigma(x), phi(x)) < gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) < A066086(x) or if A066087(x) < 0.

Original entry on oeis.org

9, 25, 28, 36, 45, 50, 52, 75, 76, 81, 84, 90, 98, 100, 117, 121, 124, 144, 148, 150, 153, 156, 175, 180, 208, 225, 228, 234, 242, 244, 245, 252, 261, 268, 275, 289, 292, 300, 304, 306, 316, 324, 325, 333, 338, 360, 364, 369, 372, 380, 388, 392, 400, 405, 412
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Examples

			For n=9: sigma(9)=13, phi(9)=6, gcd(13,6)=1, core(9)=3, sigma(3)=4, phi(3)=2, gcd(4,2)=2.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Greater[s2, s1], Print[n]], {n, 1, 256}]

A076487 Solutions to gcd(sigma(x), phi(x)) = gcd(sigma(core(x)), phi(core(x))), i.e., when A009223(x) = A066086(x) or if A066087(x) = 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Comments

The squarefree numbers are a subset of this sequence.

Examples

			For n=20: sigma(20)=42, phi(20)=8, gcd(42,8)=2, core(20)=10, sigma(10)=18, phi(10)=4, gcd(18,4)=2, so A009223(20) = A066086(20)=2.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Equal[s2, s1], Print[n]], {n, 1, 256}]
  • PARI
    isok(n) = my(c=core(n)); gcd(sigma(n), eulerphi(n)) == gcd(sigma(c), eulerphi(c)); \\ Michel Marcus, Jul 30 2017

A076488 Nonsquarefree solutions to gcd(sigma(x), phi(x)) = gcd(sigma(core(x)), Phi(core(x))), i.e., when A009223(x) = A066086(x) or if A066087(x)=0 and mu(x)=0.

Original entry on oeis.org

4, 8, 16, 20, 27, 32, 40, 60, 63, 64, 68, 80, 104, 120, 126, 128, 136, 160, 164, 171, 189, 204, 212, 220, 232, 240, 243, 256, 260, 272, 279, 294, 296, 312, 315, 320, 340, 342, 343, 350, 351, 356, 363, 375, 378, 387, 404, 408, 416, 424, 464, 476, 480, 492, 512
Offset: 1

Views

Author

Labos Elemer, Oct 17 2002

Keywords

Examples

			n=60: sigma(60)=168, phi(60)=16, gcd(168,16)=8, core(60)=30, sigma(30)=72, phi(30)=8, gcd(72,8)=8, so A009223(60)=A066086(60)=8.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Do[s1=g1[n]; s2=g2[n]; If[Equal[s2, s1]&&Equal[MoebiusMu[n], 0], Print[n]], {n, 1, 1024}]

A066086 Greatest common divisor of product (p-1) and product (p+1), where p ranges over distinct prime divisors of n; a(n) = gcd(A048250(n), A173557(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 6, 8, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 6, 2, 6, 2, 8, 2, 1, 4, 2, 24, 2, 2, 6, 8, 2, 2, 12, 2, 2, 8, 2, 2, 2, 2, 2, 8, 6, 2, 2, 8, 6, 4, 2, 2, 8, 2, 6, 4, 1, 12, 4, 2, 2, 4, 24, 2, 2, 2, 6, 8, 6, 12, 24, 2, 2, 2, 2, 2, 12, 4, 6, 8, 2, 2, 8, 8, 2, 4, 2, 24, 2, 2, 6, 4
Offset: 1

Views

Author

Labos Elemer, Dec 04 2001

Keywords

Comments

Frequently equal, but not identical, to A009223 (i.e. GCD of sigma and phi of n).

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Table[g2[w], {w, 1, 128}]
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, GCD[Times@@((#-1)& @@@ f), Times@@((#+1)& @@@ f)]]]; Array[a, 100] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    a(n)=my(f=factor(n)[,1]);gcd(prod(i=1,#f,f[i]+1),prod(i=1,#f,f[i]-1)) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = gcd(A048250(n), A023900(n)) = gcd(A000203(A007947(n)), A000010(A007947(n))).
a(n) = A322360(n) / A322359(n). - Antti Karttunen, Dec 04 2018

Extensions

Name edited, part of the old name transferred to the formula section by Antti Karttunen, Dec 04 2018
Showing 1-5 of 5 results.