cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066096 a(n) = floor(n*phi), where phi = (1 + sqrt(5))/2.

Original entry on oeis.org

0, 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106
Offset: 0

Views

Author

Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001

Keywords

Comments

a(n) is the smallest number different from a(i) and a(i)+i for i < n.
The losing positions in the game of Wythoff-Nim are precisely the pairs (a(n), a(n)+n).

Crossrefs

Programs

  • Magma
    [Floor((1+Sqrt(5))*n/2): n in [0..80]]; // G. C. Greubel, Sep 12 2023
    
  • Mathematica
    Floor[GoldenRatio*Range[0, 80]] (* G. C. Greubel, Sep 12 2023 *)
  • PARI
    a(n) = (n+sqrtint(5*n^2))\2;
    [a(n)|n<-[0..100]] \\ Simon Strandgaard, Jun 28 2022
    
  • SageMath
    [floor(golden_ratio*n) for n in range(81)] # G. C. Greubel, Sep 12 2023

Formula

For n >= 1, a(n) = A000201(n).
Duplicate values in A060143.
a(n) = 1 + A022342(n) = A000201(n).
a(n) = floor(n*phi), where phi = (1 + sqrt(5))/2. - Peter Munn, Jan 12 2018
a(n) = A026351(n) - 1. - Philippe Deléham, Jan 15 2023

Extensions

Name corrected by Peter Munn, Dec 06 2017
New name using a formula from Peter Munn by Peter Luschny, Jan 18 2023