A066117 Triangle read by rows: T(n,k) = T(n-1,k-1)*T(n,k-1) and T(n,1) = prime(n).
2, 3, 6, 5, 15, 90, 7, 35, 525, 47250, 11, 77, 2695, 1414875, 66852843750, 13, 143, 11011, 29674645, 41985913344375, 2806877704512541816406250, 17, 221, 31603, 347980633, 10326201751150285, 433555011900329243987584396875
Offset: 1
Examples
T(4,3) = T(3,2)*T(4,2) = 15*35 = 525. Rows start 2; 3, 6; 5, 15, 90; 7, 35, 525, 47250; ... From _Antti Karttunen_, Sep 18 2016: (Start) Alternatively, this table can be viewed as a square array. Then the top left 5x4 corner looks as: 2, 3, 5, 7, 11 6, 15, 35, 77, 143 90, 525, 2695, 11011, 31603 47250, 1414875, 29674645, 347980633, 2255916949 (End)
Crossrefs
Programs
-
Mathematica
T[n_, 1] := Prime[n]; T[n_, k_] := T[n, k] = T[n - 1, k - 1]*T[n, k - 1]; Table[T[n, k], {n, 1, 7}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 13 2017 *)
-
Scheme
(define (A066117 n) (A066117bi (A002260 n) (A004736 n))) ;; Compute as a square array, with row >= 1, col >= 1: (define (A066117bi row col) (if (= 1 row) (A000040 col) (* (A066117bi (- row 1) col) (A066117bi (- row 1) (+ col 1))))) ;; With alternative recurrence: (define (A066117bi row col) (if (= 1 col) (A007188 (- row 1)) (A003961 (A066117bi row (- col 1))))) ;; Antti Karttunen, Sep 18 2016
Formula
From Antti Karttunen, Sep 19 2016: (Start)
When computed as a square array A(row,col), row >= 1, col >= 1:
A(1,col) = A000040(col), for row > 1, A(row,col) = A(row-1,col)*A(row-1,col+1).
For all row >= 1, col >= 1, A055396(A(row,col)) = col.
(End)
A(1,1) = 2; for n > 1, A(n,k) = A297845(A(n-1,k),6); for k > 1, A(n,k) = A297845(A(n,k-1),3). - Peter Munn, Jul 20 2022
Comments