cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066165 Variant of Stanley's children's game. Class of n (named) children forms into rings of at least two with exactly one child inside each ring. a(n) gives number of possibilities, including clockwise order (or which hand is held), in each ring.

Original entry on oeis.org

3, 8, 30, 234, 1680, 13040, 119448, 1212120, 13412520, 161968872, 2118607920, 29813747040, 449227822680, 7216747374720, 123128587713600, 2223511629522624, 42370586275466880, 849664985938704000, 17886165587251839360, 394366490810199895680, 9088843342633833461760
Offset: 3

Views

Author

Len Smiley, Dec 12 2001

Keywords

Examples

			a(4)=8: ring must have 3 of the four, fourth in middle. Two ways for the three to hold hands.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)

Crossrefs

Cf. A066166 (original version).

Programs

  • Mathematica
    max = 20; f[x_] := Exp[-x*Log[1 - x] - x^2] - 1; Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!, 3] (* Jean-François Alcover, Oct 13 2011, after g.f. *)
  • Maxima
    a(n):=n!*sum(sum(binomial(k,j)*j!/(n-2*k+j)!*stirling1(n-2*k+j,j)*(-1)^(n-k-j),j,0,k)/k!,k,1,floor(n/2)); /* Vladimir Kruchinin, Sep 07 2010 */

Formula

E.g.f.: exp(-x*log(1-x)-x^2)-1.
a(n) = n!*sum(sum(binomial(k,j)*j!/(n-2*k+j)!*Stirling1(n-2*k+j,j)*(-1)^(n-k-j),j,0,k)/k!,k,1,floor(n/2)), n>2. - Vladimir Kruchinin, Sep 07 2010
a(n) ~ exp(-1) * n!. - Vaclav Kotesovec, Jun 04 2022