A066165 Variant of Stanley's children's game. Class of n (named) children forms into rings of at least two with exactly one child inside each ring. a(n) gives number of possibilities, including clockwise order (or which hand is held), in each ring.
3, 8, 30, 234, 1680, 13040, 119448, 1212120, 13412520, 161968872, 2118607920, 29813747040, 449227822680, 7216747374720, 123128587713600, 2223511629522624, 42370586275466880, 849664985938704000, 17886165587251839360, 394366490810199895680, 9088843342633833461760
Offset: 3
Examples
a(4)=8: ring must have 3 of the four, fourth in middle. Two ways for the three to hold hands.
References
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)
Links
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
Crossrefs
Cf. A066166 (original version).
Programs
-
Mathematica
max = 20; f[x_] := Exp[-x*Log[1 - x] - x^2] - 1; Drop[ CoefficientList[ Series[ f[x], {x, 0, max}], x]*Range[0, max]!, 3] (* Jean-François Alcover, Oct 13 2011, after g.f. *)
-
Maxima
a(n):=n!*sum(sum(binomial(k,j)*j!/(n-2*k+j)!*stirling1(n-2*k+j,j)*(-1)^(n-k-j),j,0,k)/k!,k,1,floor(n/2)); /* Vladimir Kruchinin, Sep 07 2010 */
Formula
E.g.f.: exp(-x*log(1-x)-x^2)-1.
a(n) = n!*sum(sum(binomial(k,j)*j!/(n-2*k+j)!*Stirling1(n-2*k+j,j)*(-1)^(n-k-j),j,0,k)/k!,k,1,floor(n/2)), n>2. - Vladimir Kruchinin, Sep 07 2010
a(n) ~ exp(-1) * n!. - Vaclav Kotesovec, Jun 04 2022