cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066194 A permutation of the integers (a fractal sequence): a(n) = A006068(n-1) + 1.

Original entry on oeis.org

1, 2, 4, 3, 8, 7, 5, 6, 16, 15, 13, 14, 9, 10, 12, 11, 32, 31, 29, 30, 25, 26, 28, 27, 17, 18, 20, 19, 24, 23, 21, 22, 64, 63, 61, 62, 57, 58, 60, 59, 49, 50, 52, 51, 56, 55, 53, 54, 33, 34, 36, 35, 40, 39, 37, 38, 48, 47, 45, 46, 41, 42, 44, 43, 128, 127, 125, 126, 121, 122
Offset: 1

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Comments

With an initial zero, inverse of the Gray Code (A003188). See also A006068. - Robert G. Wilson v, Jun 22 2014
I suspect the above comment refers to function A105081(n) = 1 + A003188(n - 1), n >= 1. - Antti Karttunen, Feb 15 2016

Examples

			Third nesting gives {1,2,4,3, 8,7,5,6} by means of joining the lists {1,2,4,3} = second nesting and {8,7,6,5} permuted by {1,2,4,3} giving {8,7,5,6}.
		

Crossrefs

Inverse: A105081.

Programs

  • Mathematica
    Nest[ Join[ #, (Length[ #] + Range[ Length[ #], 1, -1 ])[[ # ]]] &, {1}, 7 ]
    GrayCode[n_] := BitXor[n, Floor[n/2]]; t = Array[ GrayCode, 1000, 0]; Table[ Position[ t, n], {n, 0, 100}] // Flatten (* Robert G. Wilson v, Jun 22 2014 *)
  • Python
    def A066194(n):
        k, m = n-1, n-1>>1
        while m > 0:
            k ^= m
            m >>= 1
        return k+1 # Chai Wah Wu, Jul 01 2022
  • Scheme
    (define (A066194 n) (+ 1 (A006068 (- n 1)))) ;; Antti Karttunen, Feb 14 2016
    

Formula

a(n) = A006068(n-1) + 1, n >= 1. - Philippe Deléham, Apr 29 2005
a(n) = A006068(A268717(n)), composition of related permutations. - Antti Karttunen, Feb 14 2016
a(n) = 1 + Sum_{j=1..n-1} (1/6)*(-3 + (-1)^A007814(j) + 2^(A007814(j) + 3))*(-1)^(A000120(j) + 1). - John Erickson, Oct 18 2018

Extensions

Deléham's formula added to the name by Antti Karttunen, Feb 14 2016