A066196 Primes which have an equal number of zeros and ones in their binary expansion.
2, 37, 41, 139, 149, 163, 197, 541, 557, 563, 569, 587, 601, 613, 617, 647, 653, 659, 661, 677, 709, 787, 809, 929, 2141, 2203, 2221, 2251, 2281, 2333, 2347, 2357, 2381, 2389, 2393, 2417, 2467, 2473, 2617, 2659, 2699, 2707, 2713, 2729, 2837, 2851, 2857
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
Programs
-
Mathematica
Prime[ Select[ Range[ 10^3 ], Count[ IntegerDigits[ Prime[ # ], 2 ], 0 ] == Count[ IntegerDigits[ Prime[ # ], 2 ], 1 ] & ] ] digBalQ[n_] := Module[{d = IntegerDigits[n, 2], m}, EvenQ@(m = Length@d) && Count[d, 1] == m/2]; Select[Range[3000], PrimeQ[#] && digBalQ[#] &] (* Amiram Eldar, Nov 21 2020 *) Select[Prime[Range[500]],DigitCount[#,2,1]==DigitCount[#,2,0]&] (* Harvey P. Dale, Jun 24 2025 *)
-
PARI
isok(p) = isprime(p) && (2*hammingweight(p) == #binary(p)); \\ Michel Marcus, May 16 2022
-
Python
from itertools import count, islice from sympy import isprime from sympy.utilities.iterables import multiset_permutations def agen(): yield from filter(isprime, (int("1"+"".join(p), 2) for n in count(1) for p in multiset_permutations("0"*n+"1"*(n-1)))) print(list(islice(agen(), 50))) # Michael S. Branicky, May 15 2022