cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066196 Primes which have an equal number of zeros and ones in their binary expansion.

Original entry on oeis.org

2, 37, 41, 139, 149, 163, 197, 541, 557, 563, 569, 587, 601, 613, 617, 647, 653, 659, 661, 677, 709, 787, 809, 929, 2141, 2203, 2221, 2251, 2281, 2333, 2347, 2357, 2381, 2389, 2393, 2417, 2467, 2473, 2617, 2659, 2699, 2707, 2713, 2729, 2837, 2851, 2857
Offset: 1

Views

Author

Robert G. Wilson v, Dec 15 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Prime[ Select[ Range[ 10^3 ], Count[ IntegerDigits[ Prime[ # ], 2 ], 0 ] == Count[ IntegerDigits[ Prime[ # ], 2 ], 1 ] & ] ]
    digBalQ[n_] := Module[{d = IntegerDigits[n, 2], m}, EvenQ@(m = Length@d) && Count[d, 1] == m/2]; Select[Range[3000], PrimeQ[#] && digBalQ[#] &] (* Amiram Eldar, Nov 21 2020 *)
    Select[Prime[Range[500]],DigitCount[#,2,1]==DigitCount[#,2,0]&] (* Harvey P. Dale, Jun 24 2025 *)
  • PARI
    isok(p) = isprime(p) && (2*hammingweight(p) == #binary(p)); \\ Michel Marcus, May 16 2022
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def agen():
        yield from filter(isprime, (int("1"+"".join(p), 2) for n in count(1) for p in multiset_permutations("0"*n+"1"*(n-1))))
    print(list(islice(agen(), 50))) # Michael S. Branicky, May 15 2022

Formula

A000040 INTERSECT A031443. - R. J. Mathar, Jun 01 2011