A066237 First differences give A052849.
1, 3, 7, 19, 67, 307, 1747, 11827, 92467, 818227, 8075827, 87909427, 1045912627, 13499954227, 187856536627, 2803205272627, 44648785048627, 756023641240627, 13560771052696627, 256850971870360627, 5122654988223640627
Offset: 1
Links
- Sébastien Desbordes, Showing why it is the partial sums of A098558
Programs
-
Mathematica
RecurrenceTable[{a[0]==-1,a[1]==1,a[n]==n*a[n-1]-(n-1)a[n-2]},a,{n,30}] (* Harvey P. Dale, Dec 10 2013 *)
Formula
From Vladeta Jovovic, Dec 20 2001: (Start)
a(n) = n*a(n-1) - (n-1)*a(n-2), a(0)=-1, a(1)=1.
a(n) = 2*A003422(n) - 1. (End)
Extensions
More terms from Jason Earls, Jan 13 2002
Comments